Bär, Christian; Hanke, Bernhard Local flexibility for open partial differential relations. (English) Zbl 07570764 Commun. Pure Appl. Math. 75, No. 6, 1377-1415 (2022). MSC: 58J37 35R01 58A20 53B25 53B30 53A10 PDF BibTeX XML Cite \textit{C. Bär} and \textit{B. Hanke}, Commun. Pure Appl. Math. 75, No. 6, 1377--1415 (2022; Zbl 07570764) Full Text: DOI OpenURL
Maekawa, Yasunori; Miura, Tatsu-Hiko Rate of the enhanced dissipation for the two-jet Kolmogorov type flow on the unit sphere. (English) Zbl 07569658 J. Math. Fluid Mech. 24, No. 3, Paper No. 92, 51 p. (2022). MSC: 35Q30 35R01 47A10 76D05 PDF BibTeX XML Cite \textit{Y. Maekawa} and \textit{T.-H. Miura}, J. Math. Fluid Mech. 24, No. 3, Paper No. 92, 51 p. (2022; Zbl 07569658) Full Text: DOI OpenURL
Miura, Tatsu-Hiko Linear stability and enhanced dissipation for the two-jet Kolmogorov type flow on the unit sphere. (English) Zbl 07567817 J. Funct. Anal. 283, No. 8, Article ID 109607, 38 p. (2022). MSC: 35B35 35Q30 35R01 76D05 PDF BibTeX XML Cite \textit{T.-H. Miura}, J. Funct. Anal. 283, No. 8, Article ID 109607, 38 p. (2022; Zbl 07567817) Full Text: DOI OpenURL
Elliott, Charles M.; Garcke, Harald; Kovács, Balázs Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces. (English) Zbl 07565226 Numer. Math. 151, No. 4, 873-925 (2022). MSC: 65-XX 35R01 53C44 65M60 65M15 65M12 PDF BibTeX XML Cite \textit{C. M. Elliott} et al., Numer. Math. 151, No. 4, 873--925 (2022; Zbl 07565226) Full Text: DOI OpenURL
Anoop, T. V.; Verma, Sheela Szegö-Weinberger type inequalities for symmetric domains in simply connected space forms. (English) Zbl 07562087 J. Math. Anal. Appl. 515, No. 2, Article ID 126429, 16 p. (2022). MSC: 35P15 35J25 35R01 PDF BibTeX XML Cite \textit{T. V. Anoop} and \textit{S. Verma}, J. Math. Anal. Appl. 515, No. 2, Article ID 126429, 16 p. (2022; Zbl 07562087) Full Text: DOI OpenURL
Krom, Robin S. Regularity of the Donaldson geometric flow. (English) Zbl 07560150 Acta Math. Vietnam. 47, No. 3, 611-633 (2022). MSC: 35B65 35B45 35R01 53E50 58J35 58J90 PDF BibTeX XML Cite \textit{R. S. Krom}, Acta Math. Vietnam. 47, No. 3, 611--633 (2022; Zbl 07560150) Full Text: DOI OpenURL
Li, Mengni Global existence and scattering behavior for one dimensional wave maps into Riemannian manifolds. (English) Zbl 07558562 Result. Math. 77, No. 4, Paper No. 164, 26 p. (2022). MSC: 35L71 35A01 35B40 35P25 35R01 35R30 PDF BibTeX XML Cite \textit{M. Li}, Result. Math. 77, No. 4, Paper No. 164, 26 p. (2022; Zbl 07558562) Full Text: DOI OpenURL
Punzo, Fabio Global solutions of semilinear parabolic equations with drift term on Riemannian manifolds. (English) Zbl 07557755 Discrete Contin. Dyn. Syst. 42, No. 8, 3733-3746 (2022). MSC: 35B44 35B51 35K08 35K58 35R01 PDF BibTeX XML Cite \textit{F. Punzo}, Discrete Contin. Dyn. Syst. 42, No. 8, 3733--3746 (2022; Zbl 07557755) Full Text: DOI OpenURL
Braun, Mathias Heat flow on 1-forms under lower Ricci bounds. Functional inequalities, spectral theory, and heat kernel. (English) Zbl 07557258 J. Funct. Anal. 283, No. 7, Article ID 109599, 65 p. (2022). MSC: 35K08 35P15 35R01 53E20 58J35 58A14 58C40 PDF BibTeX XML Cite \textit{M. Braun}, J. Funct. Anal. 283, No. 7, Article ID 109599, 65 p. (2022; Zbl 07557258) Full Text: DOI OpenURL
Nguyen, Thieu Huy; Pham, Truong Xuan; Van Nguyen, Thi; Vu, Thi Ngoc Ha On periodic solutions of the incompressible Navier-Stokes equations on non-compact Riemannian manifolds. (English) Zbl 07556908 Taiwanese J. Math. 26, No. 3, 607-633 (2022). MSC: 35B10 35Q30 35R01 76D07 PDF BibTeX XML Cite \textit{T. H. Nguyen} et al., Taiwanese J. Math. 26, No. 3, 607--633 (2022; Zbl 07556908) Full Text: DOI OpenURL
Li, Gang A flow approach to the generalized Loewner-Nirenberg problem of the \(\sigma_k\)-Ricci equation. (English) Zbl 07556320 Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 169, 34 p. (2022). MSC: 53E99 35K55 35R01 53C21 PDF BibTeX XML Cite \textit{G. Li}, Calc. Var. Partial Differ. Equ. 61, No. 5, Paper No. 169, 34 p. (2022; Zbl 07556320) Full Text: DOI OpenURL
Chen, Hua; Chen, Hong-Ge; Li, Jin-Ning Upper bound estimates of eigenvalues for Hörmander operators on non-equiregular sub-Riemannian manifolds. (English. French summary) Zbl 07555978 J. Math. Pures Appl. (9) 164, 180-212 (2022). MSC: 35P15 35H20 35J70 35P20 35R01 PDF BibTeX XML Cite \textit{H. Chen} et al., J. Math. Pures Appl. (9) 164, 180--212 (2022; Zbl 07555978) Full Text: DOI OpenURL
Roidos, Nikolaos; Shao, Yuanzhen Maximal \(L_q\)-regularity of nonlocal parabolic equations in higher order Bessel potential spaces. (English) Zbl 07555786 Pure Appl. Funct. Anal. 7, No. 3, 1037-1063 (2022). MSC: 35B65 35B45 35K20 35K59 35K65 35R01 35R11 76S05 PDF BibTeX XML Cite \textit{N. Roidos} and \textit{Y. Shao}, Pure Appl. Funct. Anal. 7, No. 3, 1037--1063 (2022; Zbl 07555786) Full Text: Link OpenURL
Shi, Shujun; Zhang, Wei Constant rank theorems for Li-Yau-Hamilton type matrices of heat equations. (English) Zbl 07554395 Proc. Am. Math. Soc. 150, No. 9, 3853-3861 (2022). MSC: 35B50 35B45 35K05 35R01 PDF BibTeX XML Cite \textit{S. Shi} and \textit{W. Zhang}, Proc. Am. Math. Soc. 150, No. 9, 3853--3861 (2022; Zbl 07554395) Full Text: DOI OpenURL
Shafranov, Dmitriĭ Evgen’evich Sobolev type equations in spaces of differential forms on Riemannian manifolds without boundary. (English) Zbl 07553763 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 112-122 (2022). MSC: 35-02 35K70 35R01 PDF BibTeX XML Cite \textit{D. E. Shafranov}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 112--122 (2022; Zbl 07553763) Full Text: DOI MNR OpenURL
Choulli, Mourad Correction to: “A simple proof of a multidimensional Borg-Levinson type theorem”. (English) Zbl 07552975 Semigroup Forum 104, No. 3, 766-772 (2022). MSC: 35R30 35J25 35P05 35R01 PDF BibTeX XML Cite \textit{M. Choulli}, Semigroup Forum 104, No. 3, 766--772 (2022; Zbl 07552975) Full Text: DOI OpenURL
Li, Ze On global dynamics of Schrödinger map flows on hyperbolic planes near harmonic maps. (English) Zbl 07545283 Commun. Math. Phys. 393, No. 1, 279-345 (2022). MSC: 35B40 35Q41 35R01 58J35 PDF BibTeX XML Cite \textit{Z. Li}, Commun. Math. Phys. 393, No. 1, 279--345 (2022; Zbl 07545283) Full Text: DOI OpenURL
Natário, José; Sasane, Amol Decay of solutions to the Klein-Gordon equation on some expanding cosmological spacetimes. (English) Zbl 07543728 Ann. Henri Poincaré 23, No. 7, 2345-2389 (2022). MSC: 35Q83 35B40 35L15 83C57 83F05 35R01 PDF BibTeX XML Cite \textit{J. Natário} and \textit{A. Sasane}, Ann. Henri Poincaré 23, No. 7, 2345--2389 (2022; Zbl 07543728) Full Text: DOI OpenURL
Alexakis, Spyros; Feizmohammadi, Ali; Oksanen, Lauri Lorentzian Calderón problem under curvature bounds. (English) Zbl 07541413 Invent. Math. 229, No. 1, 87-138 (2022). MSC: 35R30 35L20 35R01 PDF BibTeX XML Cite \textit{S. Alexakis} et al., Invent. Math. 229, No. 1, 87--138 (2022; Zbl 07541413) Full Text: DOI OpenURL
Nguyen, Thieu Huy; Vu, Thi Ngoc Ha; Nguyen, Thi Van Stability and periodicity of solutions to Navier-Stokes equations on non-compact Riemannian manifolds with negative curvature. (English) Zbl 07541283 Anal. Math. Phys. 12, No. 4, Paper No. 89, 28 p. (2022). MSC: 35Q30 35B10 35B35 35A01 76D05 35R01 PDF BibTeX XML Cite \textit{T. H. Nguyen} et al., Anal. Math. Phys. 12, No. 4, Paper No. 89, 28 p. (2022; Zbl 07541283) Full Text: DOI OpenURL
Zhang, Shuijin; Yang, Minbo Cylindrically symmetric solutions of curl-curl equation with nonlocal nonlinearity. (English) Zbl 07540938 Appl. Math. Lett. 132, Article ID 108102, 9 p. (2022). MSC: 35Q61 78A60 35R01 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{M. Yang}, Appl. Math. Lett. 132, Article ID 108102, 9 p. (2022; Zbl 07540938) Full Text: DOI OpenURL
Krupchyk, Katya; Liimatainen, Tony; Salo, Mikko Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds. (English) Zbl 07534686 Adv. Math. 403, Article ID 108362, 43 p. (2022). MSC: 35R30 35A18 35A20 35J25 35R01 PDF BibTeX XML Cite \textit{K. Krupchyk} et al., Adv. Math. 403, Article ID 108362, 43 p. (2022; Zbl 07534686) Full Text: DOI OpenURL
Han, Xiaolong From nodal points to non-equidistribution at the Planck scale. (English. French summary) Zbl 07534567 C. R., Math., Acad. Sci. Paris 360, 451-458 (2022). MSC: 35P20 35J25 35R01 58J50 PDF BibTeX XML Cite \textit{X. Han}, C. R., Math., Acad. Sci. Paris 360, 451--458 (2022; Zbl 07534567) Full Text: DOI OpenURL
Beschle, Cedric Aaron; Kovács, Balázs Stability and error estimates for non-linear Cahn-Hilliard-type equations on evolving surfaces. (English) Zbl 07533890 Numer. Math. 151, No. 1, 1-48 (2022). MSC: 65M60 65N30 65L05 65L06 65L20 65M12 65M15 35K55 35R01 PDF BibTeX XML Cite \textit{C. A. Beschle} and \textit{B. Kovács}, Numer. Math. 151, No. 1, 1--48 (2022; Zbl 07533890) Full Text: DOI OpenURL
de Ávila Silva, Fernando; Machado, Eliakim Cleyton Global ultradifferentiable hypoellipticity on compact manifolds. (English) Zbl 07530385 Arch. Math. 118, No. 6, 615-624 (2022). MSC: 35H10 35B65 35R01 46F05 PDF BibTeX XML Cite \textit{F. de Ávila Silva} and \textit{E. C. Machado}, Arch. Math. 118, No. 6, 615--624 (2022; Zbl 07530385) Full Text: DOI OpenURL
Kohr, Mirela; Nistor, Victor Sobolev spaces and \(\nabla\)-differential operators on manifolds. I: Basic properties and weighted spaces. (English) Zbl 07530353 Ann. Global Anal. Geom. 61, No. 4, 721-758 (2022). MSC: 35R01 35J75 35G45 46E35 58J32 PDF BibTeX XML Cite \textit{M. Kohr} and \textit{V. Nistor}, Ann. Global Anal. Geom. 61, No. 4, 721--758 (2022; Zbl 07530353) Full Text: DOI OpenURL
Lopes, Pedro T. P.; Roidos, Nikolaos Smoothness and long time existence for solutions of the Cahn-Hilliard equation on manifolds with conical singularities. (English) Zbl 07527786 Monatsh. Math. 197, No. 4, 677-716 (2022). MSC: 35K58 35B40 35B65 35K25 35K65 35K90 35K91 35R01 PDF BibTeX XML Cite \textit{P. T. P. Lopes} and \textit{N. Roidos}, Monatsh. Math. 197, No. 4, 677--716 (2022; Zbl 07527786) Full Text: DOI OpenURL
Roidos, Nikolaos; Shao, Yuanzhen Functional inequalities involving nonlocal operators on complete Riemannian manifolds and their applications to the fractional porous medium equation. (English) Zbl 07524389 Evol. Equ. Control Theory 11, No. 3, 793-825 (2022). MSC: 35K65 26A33 35K59 35K67 35R01 35R11 39B62 76S05 PDF BibTeX XML Cite \textit{N. Roidos} and \textit{Y. Shao}, Evol. Equ. Control Theory 11, No. 3, 793--825 (2022; Zbl 07524389) Full Text: DOI OpenURL
Liu, Genqian Spectral invariants of the perturbed polyharmonic Steklov problem. (English) Zbl 07523706 Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 125, 19 p. (2022). Reviewer: Denis Borisov (Ufa) MSC: 35P20 35C20 35J58 35R01 35R30 58J35 58J50 PDF BibTeX XML Cite \textit{G. Liu}, Calc. Var. Partial Differ. Equ. 61, No. 4, Paper No. 125, 19 p. (2022; Zbl 07523706) Full Text: DOI OpenURL
Xu, Tian A local energy estimate for a class of strongly indefinite functionals. (English) Zbl 07523382 Minimax Theory Appl. 7, No. 2, 381-408 (2022). MSC: 35J47 35J61 35R01 35A01 35A15 PDF BibTeX XML Cite \textit{T. Xu}, Minimax Theory Appl. 7, No. 2, 381--408 (2022; Zbl 07523382) Full Text: Link OpenURL
Xiong, Xin; Zeng, Lingzhong; Zhu, Huihui Estimates for the higher eigenvalues of the drifting Laplacian on Hadamard manifolds. (English) Zbl 1487.35262 Kodai Math. J. 45, No. 1, 143-156 (2022). MSC: 35P15 35J25 35R01 53C23 PDF BibTeX XML Cite \textit{X. Xiong} et al., Kodai Math. J. 45, No. 1, 143--156 (2022; Zbl 1487.35262) Full Text: DOI OpenURL
Jleli, Mohamed; Samet, Bessem Instantaneous blow-up for nonlinear Sobolev type equations with potentials on Riemannian manifolds. (English) Zbl 1487.35120 Commun. Pure Appl. Anal. 21, No. 6, 2065-2078 (2022). MSC: 35B44 35B33 35L82 35R01 PDF BibTeX XML Cite \textit{M. Jleli} and \textit{B. Samet}, Commun. Pure Appl. Anal. 21, No. 6, 2065--2078 (2022; Zbl 1487.35120) Full Text: DOI OpenURL
Farina, Alberto; Roncoroni, Alberto Serrin’s type problems in warped product manifolds. (English) Zbl 1487.35384 Commun. Contemp. Math. 24, No. 4, Article ID 2150020, 21 p. (2022). MSC: 35R01 35N25 35B50 35J25 53C24 58J05 58J32 PDF BibTeX XML Cite \textit{A. Farina} and \textit{A. Roncoroni}, Commun. Contemp. Math. 24, No. 4, Article ID 2150020, 21 p. (2022; Zbl 1487.35384) Full Text: DOI OpenURL
Lizaur, Francisco Torres de Chaos in the incompressible Euler equation on manifolds of high dimension. (English) Zbl 07514025 Invent. Math. 228, No. 2, 687-715 (2022). MSC: 35Q31 35R01 37K99 76B03 35B41 58D15 PDF BibTeX XML Cite \textit{F. T. de Lizaur}, Invent. Math. 228, No. 2, 687--715 (2022; Zbl 07514025) Full Text: DOI OpenURL
Fajman, David; Urban, Liam Blow-up of waves on singular spacetimes with generic spatial metrics. (English) Zbl 1487.35115 Lett. Math. Phys. 112, No. 2, Paper No. 42, 31 p. (2022). MSC: 35B44 35L05 35Q85 35R01 PDF BibTeX XML Cite \textit{D. Fajman} and \textit{L. Urban}, Lett. Math. Phys. 112, No. 2, Paper No. 42, 31 p. (2022; Zbl 1487.35115) Full Text: DOI OpenURL
Bellassoued, Mourad; Rezig, Zouhour Recovery of transversal metric tensor in the Schrödinger equation from the Dirichlet-to-Neumann map. (English) Zbl 1487.35438 Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1061-1084 (2022). MSC: 35R30 35J10 35R01 PDF BibTeX XML Cite \textit{M. Bellassoued} and \textit{Z. Rezig}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1061--1084 (2022; Zbl 1487.35438) Full Text: DOI OpenURL
Ghimenti, Marco G.; Micheletti, Anna Maria Compactness and blow up results for doubly perturbed Yamabe problems on manifolds with non umbilic boundary. (English) Zbl 07510631 Electron Res. Arch. 30, No. 4, 1209-1235 (2022). MSC: 53C18 53C21 35R01 PDF BibTeX XML Cite \textit{M. G. Ghimenti} and \textit{A. M. Micheletti}, Electron Res. Arch. 30, No. 4, 1209--1235 (2022; Zbl 07510631) Full Text: DOI OpenURL
Jost, Jürgen; Liu, Lei; Zhu, Miaomiao A mixed elliptic-parabolic boundary value problem coupling a harmonic-like map with a nonlinear spinor. (English) Zbl 1486.35399 J. Reine Angew. Math. 785, 81-116 (2022). MSC: 35R01 35Q40 35Q41 53C43 58J05 58J35 PDF BibTeX XML Cite \textit{J. Jost} et al., J. Reine Angew. Math. 785, 81--116 (2022; Zbl 1486.35399) Full Text: DOI OpenURL
Fang, Hao; Ma, Biao Constant \(Q\)-curvature metrics on conic 4-manifolds. (English) Zbl 07499996 Adv. Calc. Var. 15, No. 2, 235-264 (2022). MSC: 53C18 53C21 35R01 49-XX PDF BibTeX XML Cite \textit{H. Fang} and \textit{B. Ma}, Adv. Calc. Var. 15, No. 2, 235--264 (2022; Zbl 07499996) Full Text: DOI OpenURL
Hebey, Emmanuel Schrödinger-Poisson-Proca systems in EMS regime. (English) Zbl 1486.35179 Commun. Contemp. Math. 24, No. 3, Article ID 2150038, 8 p. (2022). MSC: 35J47 35J61 35R01 35A01 PDF BibTeX XML Cite \textit{E. Hebey}, Commun. Contemp. Math. 24, No. 3, Article ID 2150038, 8 p. (2022; Zbl 1486.35179) Full Text: DOI OpenURL
Nicolini, Marina New examples of shrinking Laplacian solitons. (English) Zbl 1486.35125 Q. J. Math. 73, No. 1, 239-259 (2022). MSC: 35C08 35K05 35R01 53E20 PDF BibTeX XML Cite \textit{M. Nicolini}, Q. J. Math. 73, No. 1, 239--259 (2022; Zbl 1486.35125) Full Text: DOI OpenURL
Andreucci, Daniele; Tedeev, Anatoli F. Existence of solutions of degenerate parabolic equations with inhomogeneous density and growing data on manifolds. (English) Zbl 1486.35275 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 219, Article ID 112818, 15 p. (2022). MSC: 35K65 35K15 35K59 35B40 35R01 PDF BibTeX XML Cite \textit{D. Andreucci} and \textit{A. F. Tedeev}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 219, Article ID 112818, 15 p. (2022; Zbl 1486.35275) Full Text: DOI OpenURL
Keeler, Blake; Marzuola, Jeremy L. Pointwise dispersive estimates for Schrödinger operators on product cones. (English) Zbl 1486.35159 J. Differ. Equations 320, 419-468 (2022). MSC: 35J10 35R01 35P05 PDF BibTeX XML Cite \textit{B. Keeler} and \textit{J. L. Marzuola}, J. Differ. Equations 320, 419--468 (2022; Zbl 1486.35159) Full Text: DOI OpenURL
Milatovic, Ognjen; Saratchandran, Hemanth Essential self-adjointness of perturbed biharmonic operators via conformally transformed metrics. (English) Zbl 1486.35173 Potential Anal. 56, No. 4, 623-647 (2022). MSC: 35J30 47B25 35R01 PDF BibTeX XML Cite \textit{O. Milatovic} and \textit{H. Saratchandran}, Potential Anal. 56, No. 4, 623--647 (2022; Zbl 1486.35173) Full Text: DOI OpenURL
Blaga, Adara M.; Özgür, Cihan Almost \(\eta\)-Ricci and almost \(\eta\)-Yamabe solitons with torse-forming potential vector field. (English) Zbl 07495691 Quaest. Math. 45, No. 1, 143-163 (2022). MSC: 35Q51 53B25 53B50 35C08 35R01 PDF BibTeX XML Cite \textit{A. M. Blaga} and \textit{C. Özgür}, Quaest. Math. 45, No. 1, 143--163 (2022; Zbl 07495691) Full Text: DOI OpenURL
Abreu, Emerson; Barbosa, Ezequiel; Ramirez, Joel Cruz Infinitely many sign-changing solutions of a critical fractional equation. (English) Zbl 1486.35184 Ann. Mat. Pura Appl. (4) 201, No. 2, 861-901 (2022). MSC: 35J60 35R11 35R01 35A01 PDF BibTeX XML Cite \textit{E. Abreu} et al., Ann. Mat. Pura Appl. (4) 201, No. 2, 861--901 (2022; Zbl 1486.35184) Full Text: DOI OpenURL
Brovkin, V. V. On the existence of solutions of the Neumann problem for the \(p \)-Laplacian on hyperbolic manifolds with a model end. (English. Russian original) Zbl 1486.35232 Differ. Equ. 58, No. 1, 139-141 (2022); translation from Differ. Uravn. 58, No. 1, 139-141 (2022). MSC: 35J92 35R01 35J25 35A01 PDF BibTeX XML Cite \textit{V. V. Brovkin}, Differ. Equ. 58, No. 1, 139--141 (2022; Zbl 1486.35232); translation from Differ. Uravn. 58, No. 1, 139--141 (2022) Full Text: DOI OpenURL
Xiong, Changwei On the spectra of three Steklov eigenvalue problems on warped product manifolds. (English) Zbl 07493884 J. Geom. Anal. 32, No. 5, Paper No. 153, 35 p. (2022). MSC: 35P15 35J25 35R01 58C40 PDF BibTeX XML Cite \textit{C. Xiong}, J. Geom. Anal. 32, No. 5, Paper No. 153, 35 p. (2022; Zbl 07493884) Full Text: DOI arXiv OpenURL
Qiang, Tao; Xia, Chao Compact hypersurfaces of prescribed mean curvature with free boundary in a ball. (English) Zbl 1487.53016 Ann. Global Anal. Geom. 61, No. 3, 679-689 (2022). MSC: 53A10 35J62 35R01 PDF BibTeX XML Cite \textit{T. Qiang} and \textit{C. Xia}, Ann. Global Anal. Geom. 61, No. 3, 679--689 (2022; Zbl 1487.53016) Full Text: DOI OpenURL
Roidos, Nikolaos; Shao, Yuanzhen The fractional porous medium equation on manifolds with conical singularities. I. (English) Zbl 1485.35405 J. Evol. Equ. 22, No. 1, Paper No. 8, 39 p. (2022). MSC: 35R11 35K59 35K65 35R01 47D06 76S05 PDF BibTeX XML Cite \textit{N. Roidos} and \textit{Y. Shao}, J. Evol. Equ. 22, No. 1, Paper No. 8, 39 p. (2022; Zbl 1485.35405) Full Text: DOI arXiv OpenURL
Sy, Mouhamadou; Yu, Xueying Global well-posedness for the cubic fractional NLS on the unit disk. (English) Zbl 07489727 Nonlinearity 35, No. 4, 2020-2072 (2022). MSC: 35Q55 35A01 35A02 35R01 37K06 37L50 PDF BibTeX XML Cite \textit{M. Sy} and \textit{X. Yu}, Nonlinearity 35, No. 4, 2020--2072 (2022; Zbl 07489727) Full Text: DOI arXiv OpenURL
Avalos, Rodrigo; Laurain, Paul; Lira, Jorge H. A positive energy theorem for fourth-order gravity. (English) Zbl 07488385 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 48, 33 p. (2022). MSC: 35Q75 35Q41 83C40 35A30 35R01 PDF BibTeX XML Cite \textit{R. Avalos} et al., Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 48, 33 p. (2022; Zbl 07488385) Full Text: DOI arXiv OpenURL
Cacciafesta, Federico; de Suzzoni, Anne-Sophie Local in time Strichartz estimates for the Dirac equation on spherically symmetric spaces. (English) Zbl 07487072 Int. Math. Res. Not. 2022, No. 4, 2729-2771 (2022). MSC: 35Q41 35B40 35B06 35A01 35A02 35R01 PDF BibTeX XML Cite \textit{F. Cacciafesta} and \textit{A.-S. de Suzzoni}, Int. Math. Res. Not. 2022, No. 4, 2729--2771 (2022; Zbl 07487072) Full Text: DOI arXiv OpenURL
Tetlow, Alexander Recovery of a time-dependent Hermitian connection and potential appearing in the dynamic Schrödinger equation. (English) Zbl 1484.35416 SIAM J. Math. Anal. 54, No. 2, 1347-1369 (2022). MSC: 35R30 35R01 35Q41 53C05 PDF BibTeX XML Cite \textit{A. Tetlow}, SIAM J. Math. Anal. 54, No. 2, 1347--1369 (2022; Zbl 1484.35416) Full Text: DOI arXiv OpenURL
Gràcia, Xavier; Rivas, Xavier; Román-Roy, Narciso Skinner-Rusk formalism for \(k\)-contact systems. (English) Zbl 07482865 J. Geom. Phys. 172, Article ID 104429, 24 p. (2022). Reviewer: Yarema Prykarpatskyy (Kraków) MSC: 70S05 70G45 70H45 35Q61 35R01 53C15 53D10 53Z05 58A10 PDF BibTeX XML Cite \textit{X. Gràcia} et al., J. Geom. Phys. 172, Article ID 104429, 24 p. (2022; Zbl 07482865) Full Text: DOI arXiv OpenURL
Feizmohammadi, Ali; Oksanen, Lauri Recovery of zeroth order coefficients in non-linear wave equations. (English) Zbl 1484.35408 J. Inst. Math. Jussieu 21, No. 2, 367-393 (2022). MSC: 35R30 35L71 35R01 PDF BibTeX XML Cite \textit{A. Feizmohammadi} and \textit{L. Oksanen}, J. Inst. Math. Jussieu 21, No. 2, 367--393 (2022; Zbl 1484.35408) Full Text: DOI arXiv OpenURL
Seto, Shoo; Wei, Guofang; Zhu, Xuwen Fundamental gaps of spherical triangles. (English) Zbl 07478455 Ann. Global Anal. Geom. 61, No. 1, 1-19 (2022). Reviewer: Victor Alexandrov (Novosibirsk) MSC: 35P15 35J05 51M16 35R01 PDF BibTeX XML Cite \textit{S. Seto} et al., Ann. Global Anal. Geom. 61, No. 1, 1--19 (2022; Zbl 07478455) Full Text: DOI arXiv OpenURL
Paschalis, M. Geometric Hardy inequalities via integration on flows. (English) Zbl 07475804 Math. Inequal. Appl. 25, No. 1, 49-72 (2022). Reviewer: Yehuda Pinchover (Haifa) MSC: 35J75 58J05 35R01 35J62 PDF BibTeX XML Cite \textit{M. Paschalis}, Math. Inequal. Appl. 25, No. 1, 49--72 (2022; Zbl 07475804) Full Text: DOI arXiv OpenURL
Hasegawa, Shoichi Separation phenomena of radial solutions to the Lane-Emden equation on non-compact Riemannian manifolds. (English) Zbl 1484.35213 J. Math. Anal. Appl. 510, No. 2, Article ID 126028, 14 p. (2022). MSC: 35J61 35R01 35B06 PDF BibTeX XML Cite \textit{S. Hasegawa}, J. Math. Anal. Appl. 510, No. 2, Article ID 126028, 14 p. (2022; Zbl 1484.35213) Full Text: DOI OpenURL
Ho, Pak Tung; Shin, Jinwoo Equivariant Yamabe problem with boundary. (English) Zbl 07474269 Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 38, 37 p. (2022). MSC: 53C18 53C21 35R01 58J32 PDF BibTeX XML Cite \textit{P. T. Ho} and \textit{J. Shin}, Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 38, 37 p. (2022; Zbl 07474269) Full Text: DOI OpenURL
Kamalia, Putri Zahra; Sakaguchi, Shigeru The principal eigenfunction of the Dirichlet Laplacian with prescribed numbers of critical points on the upper half of a topological torus. (English) Zbl 1484.35173 J. Math. Anal. Appl. 509, No. 2, Article ID 125972, 11 p. (2022). MSC: 35J25 35R01 PDF BibTeX XML Cite \textit{P. Z. Kamalia} and \textit{S. Sakaguchi}, J. Math. Anal. Appl. 509, No. 2, Article ID 125972, 11 p. (2022; Zbl 1484.35173) Full Text: DOI arXiv OpenURL
Araújo Filho, Marcio Costa Estimates for the first eigenvalues of bi-drifted Laplacian on smooth metric measure space. (English) Zbl 1483.35140 Differ. Geom. Appl. 80, Article ID 101839, 18 p. (2022). MSC: 35P15 35J40 35R01 58C35 58C40 PDF BibTeX XML Cite \textit{M. C. Araújo Filho}, Differ. Geom. Appl. 80, Article ID 101839, 18 p. (2022; Zbl 1483.35140) Full Text: DOI arXiv OpenURL
Premoselli, Bruno Towers of bubbles for Yamabe-type equations and for the Brézis-Nirenberg problem in dimensions \(n \geq 7\). (English) Zbl 1487.35206 J. Geom. Anal. 32, No. 3, Paper No. 73, 65 p. (2022). MSC: 35J61 35R01 35A01 PDF BibTeX XML Cite \textit{B. Premoselli}, J. Geom. Anal. 32, No. 3, Paper No. 73, 65 p. (2022; Zbl 1487.35206) Full Text: DOI arXiv OpenURL
Cavaterra, Cecilia; Dipierro, Serena; Gao, Zu; Valdinoci, Enrico Global gradient estimates for a general type of nonlinear parabolic equations. (English) Zbl 1483.35050 J. Geom. Anal. 32, No. 2, Paper No. 65, 37 p. (2022). MSC: 35B45 35B09 35B50 35K58 35R01 PDF BibTeX XML Cite \textit{C. Cavaterra} et al., J. Geom. Anal. 32, No. 2, Paper No. 65, 37 p. (2022; Zbl 1483.35050) Full Text: DOI arXiv OpenURL
Bellassoued, Mourad Stable recovery of a metric tensor from the partial hyperbolic Dirichlet to Neumann map. (English) Zbl 1483.35337 J. Differ. Equations 313, 557-596 (2022). MSC: 35R30 35L05 35L20 35R01 PDF BibTeX XML Cite \textit{M. Bellassoued}, J. Differ. Equations 313, 557--596 (2022; Zbl 1483.35337) Full Text: DOI arXiv OpenURL
Li, Yang Dirichlet problem for maximal graphs of higher codimension. (English) Zbl 1485.53080 Int. Math. Res. Not. 2022, No. 3, 2159-2179 (2022). MSC: 53C42 35G99 35R01 53C50 PDF BibTeX XML Cite \textit{Y. Li}, Int. Math. Res. Not. 2022, No. 3, 2159--2179 (2022; Zbl 1485.53080) Full Text: DOI arXiv OpenURL
Chen, Hang Chiti-type reverse Hölder inequality and torsional rigidity under integral Ricci curvature condition. (English) Zbl 1483.35051 Potential Anal. 56, No. 2, 333-349 (2022). MSC: 35B45 35J25 35P15 35R01 53C21 58J60 60J65 PDF BibTeX XML Cite \textit{H. Chen}, Potential Anal. 56, No. 2, 333--349 (2022; Zbl 1483.35051) Full Text: DOI OpenURL
Yu, Chengjie; Zhao, Feifei Li-Yau multipLier set and optimal Li-Yau gradient estimate on hyperboLic spaces. (English) Zbl 1483.35059 Potential Anal. 56, No. 2, 191-211 (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B45 35K05 35K08 35R01 53E20 58J35 PDF BibTeX XML Cite \textit{C. Yu} and \textit{F. Zhao}, Potential Anal. 56, No. 2, 191--211 (2022; Zbl 1483.35059) Full Text: DOI arXiv OpenURL
Ho, Pak Tung; Shin, Jinwoo Evolution of the Steklov eigenvalue along the conformal mean curvature flow. (English) Zbl 1485.53108 J. Geom. Phys. 173, Article ID 104436, 15 p. (2022). MSC: 53E10 58C40 58J50 35R01 53C21 PDF BibTeX XML Cite \textit{P. T. Ho} and \textit{J. Shin}, J. Geom. Phys. 173, Article ID 104436, 15 p. (2022; Zbl 1485.53108) Full Text: DOI OpenURL
Shao, Chengyang Long time behavior of a quasilinear hyperbolic system modelling elastic membranes. (English) Zbl 1481.35068 Arch. Ration. Mech. Anal. 243, No. 2, 501-557 (2022). MSC: 35B40 35L53 35R01 53A05 53Z05 58J45 74K15 PDF BibTeX XML Cite \textit{C. Shao}, Arch. Ration. Mech. Anal. 243, No. 2, 501--557 (2022; Zbl 1481.35068) Full Text: DOI arXiv OpenURL
Patacchini, Francesco S.; Slepčev, Dejan The nonlocal-interaction equation near attracting manifolds. (English) Zbl 1482.35007 Discrete Contin. Dyn. Syst. 42, No. 2, 903-929 (2022). MSC: 35A15 35A35 35D30 35R01 35R09 45K05 65M12 PDF BibTeX XML Cite \textit{F. S. Patacchini} and \textit{D. Slepčev}, Discrete Contin. Dyn. Syst. 42, No. 2, 903--929 (2022; Zbl 1482.35007) Full Text: DOI arXiv OpenURL
Kim, Jongmyeong; Kim, Minhyun; Lee, Ki-Ahm Harnack inequality for nonlocal operators on manifolds with nonnegative curvature. (English) Zbl 1482.35054 Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 22, 29 p. (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B45 35B65 35J60 35R01 47G20 58J05 PDF BibTeX XML Cite \textit{J. Kim} et al., Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 22, 29 p. (2022; Zbl 1482.35054) Full Text: DOI arXiv OpenURL
Choi, Beomjun; Gao, Jianhui; Haslhofer, Robert; Sigal, Daniel Heat flow on time-dependent manifolds. (English) Zbl 1479.35509 J. Geom. Anal. 32, No. 1, Paper No. 11, 16 p. (2022). MSC: 35K15 35R01 53E20 58J35 PDF BibTeX XML Cite \textit{B. Choi} et al., J. Geom. Anal. 32, No. 1, Paper No. 11, 16 p. (2022; Zbl 1479.35509) Full Text: DOI arXiv OpenURL
Li, Gang Two flow approaches to the Loewner-Nirenberg problem on manifolds. (English) Zbl 1485.35362 J. Geom. Anal. 32, No. 1, Paper No. 7, 30 p. (2022). Reviewer: Ruobing Zhang (Stony Brook) MSC: 35R01 35A01 35J61 35K20 35K58 35B40 PDF BibTeX XML Cite \textit{G. Li}, J. Geom. Anal. 32, No. 1, Paper No. 7, 30 p. (2022; Zbl 1485.35362) Full Text: DOI arXiv OpenURL
Nguyen Thac Dung; Nguyen Ngoc Khanh Gradient estimates for a class of semilinear parabolic equations and their applications. (English) Zbl 1481.35094 Vietnam J. Math. 50, No. 1, 249-259 (2022). MSC: 35B45 35B53 35K58 35R01 PDF BibTeX XML Cite \textit{Nguyen Thac Dung} and \textit{Nguyen Ngoc Khanh}, Vietnam J. Math. 50, No. 1, 249--259 (2022; Zbl 1481.35094) Full Text: DOI OpenURL
Ruzhansky, Michael; Yessirkegenov, Nurgissa Existence and non-existence of global solutions for semilinear heat equations and inequalities on sub-Riemannian manifolds, and Fujita exponent on unimodular Lie groups. (English) Zbl 1479.35148 J. Differ. Equations 308, 455-473 (2022). MSC: 35B44 35K58 35R01 35R45 58J35 PDF BibTeX XML Cite \textit{M. Ruzhansky} and \textit{N. Yessirkegenov}, J. Differ. Equations 308, 455--473 (2022; Zbl 1479.35148) Full Text: DOI arXiv OpenURL
Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko; Tyni, Teemu Inverse problems for elliptic equations with fractional power type nonlinearities. (English) Zbl 1482.35276 J. Differ. Equations 306, 189-219 (2022). MSC: 35R30 35J25 35J61 35R01 PDF BibTeX XML Cite \textit{T. Liimatainen} et al., J. Differ. Equations 306, 189--219 (2022; Zbl 1482.35276) Full Text: DOI arXiv OpenURL
Pozzetta, Marco Convergence of elastic flows of curves into manifolds. (English) Zbl 07418808 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112581, 53 p. (2022). Reviewer: Antonio Masiello (Bari) MSC: 53E40 35R01 46N20 49Q10 53C42 PDF BibTeX XML Cite \textit{M. Pozzetta}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112581, 53 p. (2022; Zbl 07418808) Full Text: DOI arXiv OpenURL
Le Rousseau, Jérôme; Lebeau, Gilles; Robbiano, Luc Elliptic Carleman estimates and applications to stabilization and controllability. Volume II. General boundary conditions on Riemannian manifolds. (English) Zbl 07414816 Progress in Nonlinear Differential Equations and Their Applications 98. Subseries in Control. Cham: Birkhäuser (ISBN 978-3-030-88669-1/hbk; 978-3-030-88670-7/ebook). ix, 547 p. (2022). MSC: 35-02 35B60 35S15 35P15 35R01 93B05 PDF BibTeX XML Cite \textit{J. Le Rousseau} et al., Elliptic Carleman estimates and applications to stabilization and controllability. Volume II. General boundary conditions on Riemannian manifolds. Cham: Birkhäuser (2022; Zbl 07414816) Full Text: DOI OpenURL
Picard, Rainer; Trostorff, Sascha Dynamic first order wave systems with drift term on Riemannian manifolds. (English) Zbl 1475.35202 J. Math. Anal. Appl. 505, No. 1, Article ID 125465, 30 p. (2022). MSC: 35L45 35R01 PDF BibTeX XML Cite \textit{R. Picard} and \textit{S. Trostorff}, J. Math. Anal. Appl. 505, No. 1, Article ID 125465, 30 p. (2022; Zbl 1475.35202) Full Text: DOI arXiv OpenURL
Bellassoued, Mourad; Choulli, Mourad; Dos Santos Ferreira, David; Kian, Yavar; Stefanov, Plamen A Borg-Levinson theorem for magnetic Schrödinger operators on a Riemannian manifold. (Un théorème de Borg-Levinson pour les opérateurs de Schrödinger magnétiques sur une variété Riemannienne.) (English. French summary) Zbl 07554452 Ann. Inst. Fourier 71, No. 6, 2471-2517 (2021). MSC: 35R30 35J10 35J25 35P05 35R01 PDF BibTeX XML Cite \textit{M. Bellassoued} et al., Ann. Inst. Fourier 71, No. 6, 2471--2517 (2021; Zbl 07554452) Full Text: DOI OpenURL
Shafarevich, A. I.; Tsvetkova, A. V. The wave equation with symmetric velocity on the hybrid manifold obtained by gluing a ray to a three-dimensional sphere. (English. Russian original) Zbl 07542556 Trans. Mosc. Math. Soc. 2021, 305-325 (2021); translation from Tr. Mosk. Mat. O.-va 82, No. 2, 369-392 (2021). MSC: 35R01 35R02 35L05 35L15 PDF BibTeX XML Cite \textit{A. I. Shafarevich} and \textit{A. V. Tsvetkova}, Trans. Mosc. Math. Soc. 2021, 305--325 (2021; Zbl 07542556); translation from Tr. Mosk. Mat. O.-va 82, No. 2, 369--392 (2021) Full Text: DOI OpenURL
Duan, Beiping; Li, Buyang; Zhang, Zhimin High-order fully discrete energy diminishing evolving surface finite element methods for a class of geometric curvature flows. (English) Zbl 07539517 Ann. Appl. Math. 37, No. 4, 405-436 (2021). MSC: 65M60 65M70 35R01 PDF BibTeX XML Cite \textit{B. Duan} et al., Ann. Appl. Math. 37, No. 4, 405--436 (2021; Zbl 07539517) Full Text: DOI OpenURL
Zeng, Fanqi Hamilton type gradient estimates for a general type of nonlinear parabolic equations on Riemannian manifolds. (English) Zbl 07536346 AIMS Math. 6, No. 10, 10506-10522 (2021). MSC: 35B09 35B45 35R01 53C44 PDF BibTeX XML Cite \textit{F. Zeng}, AIMS Math. 6, No. 10, 10506--10522 (2021; Zbl 07536346) Full Text: DOI OpenURL
Nowak, Adam; Sjögren, Peter; Szarek, Tomasz Z. Genuinely sharp heat kernel estimates on compact rank-one symmetric spaces, for Jacobi expansions, on a ball and on a simplex. (English) Zbl 1486.35245 Math. Ann. 381, No. 3-4, 1455-1476 (2021). MSC: 35K08 35B45 35R01 58J35 42C10 PDF BibTeX XML Cite \textit{A. Nowak} et al., Math. Ann. 381, No. 3--4, 1455--1476 (2021; Zbl 1486.35245) Full Text: DOI OpenURL
Lagacé, Jean; St-Amant, Simon Spectral invariants of Dirichlet-to-Neumann operators on surfaces. (English) Zbl 07483998 J. Spectr. Theory 11, No. 4, 1627-1667 (2021). Reviewer: Davide Buoso (Alessandria) MSC: 35P20 31A25 35J25 35R01 58J40 PDF BibTeX XML Cite \textit{J. Lagacé} and \textit{S. St-Amant}, J. Spectr. Theory 11, No. 4, 1627--1667 (2021; Zbl 07483998) Full Text: DOI arXiv OpenURL
Feizmohammadi, Ali; Ilmavirta, Joonas; Kian, Yavar; Oksanen, Lauri Recovery of time-dependent coefficients from boundary data for hyperbolic equations. (English) Zbl 1484.35407 J. Spectr. Theory 11, No. 3, 1107-1143 (2021). Reviewer: Giovanni S. Alberti (Genova) MSC: 35R30 35L20 35R01 PDF BibTeX XML Cite \textit{A. Feizmohammadi} et al., J. Spectr. Theory 11, No. 3, 1107--1143 (2021; Zbl 1484.35407) Full Text: DOI arXiv OpenURL
Kolokoltsov, V. N.; Troeva, M. S. Abstract McKean-Vlasov and Hamilton-Jacobi-Bellman equations, their fractional versions and related forward-backward systems on Riemannian manifolds. (English. Russian original) Zbl 1486.35436 Proc. Steklov Inst. Math. 315, No. 1, 118-139 (2021); translation from Tr. Mat. Inst. Steklova 315, 128-150 (2021). MSC: 35R11 35F21 35R01 47D06 49L12 49N80 PDF BibTeX XML Cite \textit{V. N. Kolokoltsov} and \textit{M. S. Troeva}, Proc. Steklov Inst. Math. 315, No. 1, 118--139 (2021; Zbl 1486.35436); translation from Tr. Mat. Inst. Steklova 315, 128--150 (2021) Full Text: DOI arXiv OpenURL
Andreucci, Daniele; Tedeev, Anatoli F. Asymptotic properties of solutions to the Cauchy problem for degenerate parabolic equations with inhomogeneous density on manifolds. (English) Zbl 1481.35043 Milan J. Math. 89, No. 2, 295-327 (2021). MSC: 35B40 35B44 35K15 35K59 35K65 35R01 PDF BibTeX XML Cite \textit{D. Andreucci} and \textit{A. F. Tedeev}, Milan J. Math. 89, No. 2, 295--327 (2021; Zbl 1481.35043) Full Text: DOI arXiv OpenURL
Kovács, Balázs; Li, Buyang; Lubich, Christian A Convergent evolving finite element algorithm for Willmore flow of closed surfaces. (English) Zbl 07459671 Numer. Math. 149, No. 3, 595-643 (2021). MSC: 65-XX 35R01 65M60 65M15 65M12 PDF BibTeX XML Cite \textit{B. Kovács} et al., Numer. Math. 149, No. 3, 595--643 (2021; Zbl 07459671) Full Text: DOI arXiv OpenURL
Li, Yang Dirichlet problem for maximal graphs of higher codimension. (English) Zbl 07456806 Int. Math. Res. Not. 2021, No. 24, 19091-19111 (2021). Reviewer: Andrea Tamburelli (Houston) MSC: 53C42 53C50 35G99 35R01 PDF BibTeX XML Cite \textit{Y. Li}, Int. Math. Res. Not. 2021, No. 24, 19091--19111 (2021; Zbl 07456806) Full Text: DOI OpenURL
Gu, Guangze; Gui, Changfeng; Hu, Yeyao; Li, Qinfeng Uniqueness and symmetry for the mean field equation on arbitrary flat tori. (English) Zbl 1481.35134 Int. Math. Res. Not. 2021, No. 24, 18812-18827 (2021). MSC: 35J05 35J91 35R01 35B06 35A02 PDF BibTeX XML Cite \textit{G. Gu} et al., Int. Math. Res. Not. 2021, No. 24, 18812--18827 (2021; Zbl 1481.35134) Full Text: DOI OpenURL
Heinonen, Esko Survey on the asymptotic Dirichlet problem for the minimal surface equation. (English) Zbl 1484.53007 Hoffmann, Tim (ed.) et al., Minimal surfaces: integrable systems and visualisation. M:iv workshops, 2016–19. Cham: Springer. Springer Proc. Math. Stat. 349, 111-129 (2021). MSC: 53-02 53C42 53C21 35R01 PDF BibTeX XML Cite \textit{E. Heinonen}, Springer Proc. Math. Stat. 349, 111--129 (2021; Zbl 1484.53007) Full Text: DOI arXiv OpenURL
Impera, Debora; Rimoldi, Michele; Veronelli, Giona Density problems for second order Sobolev spaces and cut-off functions on manifolds with unbounded geometry. (English) Zbl 1485.53043 Int. Math. Res. Not. 2021, No. 14, 10521-10558 (2021). Reviewer: Chandan Kumar Mondal (Durgapur) MSC: 53C21 35R01 PDF BibTeX XML Cite \textit{D. Impera} et al., Int. Math. Res. Not. 2021, No. 14, 10521--10558 (2021; Zbl 1485.53043) Full Text: DOI arXiv OpenURL
Ahn, Hyunjin; Ha, Seung-Yeal; Shim, Woojoo Emergent behaviors of the discrete thermodynamic Cucker-Smale model on complete Riemannian manifolds. (English) Zbl 07452076 J. Math. Phys. 62, No. 12, 122701, 29 p. (2021). MSC: 35Q92 92B25 92B15 53C80 58D17 82C22 35R01 PDF BibTeX XML Cite \textit{H. Ahn} et al., J. Math. Phys. 62, No. 12, 122701, 29 p. (2021; Zbl 07452076) Full Text: DOI OpenURL
He, Siyuan; Liu, Xiaochun Multiple solutions for a class of fractional logarithmic Schrödinger equations. (English) Zbl 1481.35195 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 70, 30 p. (2021). MSC: 35J61 35R01 35A01 PDF BibTeX XML Cite \textit{S. He} and \textit{X. Liu}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 70, 30 p. (2021; Zbl 1481.35195) Full Text: DOI OpenURL
Dai, Xianzhe; Seto, Shoo; Wei, Guofang Fundamental gap estimate for convex domains on sphere – the case \(n=2\). (English) Zbl 07451601 Commun. Anal. Geom. 29, No. 5, 1095-1125 (2021). MSC: 35P15 35J25 35R01 PDF BibTeX XML Cite \textit{X. Dai} et al., Commun. Anal. Geom. 29, No. 5, 1095--1125 (2021; Zbl 07451601) Full Text: DOI arXiv OpenURL
Abels, Helmut; Arab, Nasrin; Garcke, Harald Standard planar double bubbles are dynamically stable under surface diffusion flow. (English) Zbl 1480.35006 Commun. Anal. Geom. 29, No. 5, 1007-1060 (2021). MSC: 35A15 35B35 35K10 35R01 26B35 PDF BibTeX XML Cite \textit{H. Abels} et al., Commun. Anal. Geom. 29, No. 5, 1007--1060 (2021; Zbl 1480.35006) Full Text: DOI arXiv OpenURL
Goldstein, Gisèle Ruiz; Goldstein, Jerome A.; Kömbe, Ismail; Bakim, Sümeyye Nonexistence results for parabolic equations involving the \(p\)-Laplacian and Hardy-Leray-type inequalities on Riemannian manifolds. (English) Zbl 1480.35290 J. Evol. Equ. 21, No. 3, 3675-3701 (2021). MSC: 35K92 35A01 35B33 35K20 35R01 PDF BibTeX XML Cite \textit{G. R. Goldstein} et al., J. Evol. Equ. 21, No. 3, 3675--3701 (2021; Zbl 1480.35290) Full Text: DOI OpenURL
Besset, Nicolas; Häfner, Dietrich Existence of exponentially growing finite energy solutions for the charged Klein-Gordon equation on the de Sitter-Kerr-Newman metric. (English) Zbl 1482.35127 J. Hyperbolic Differ. Equ. 18, No. 2, 293-310 (2021). MSC: 35L10 35B20 35B34 35B40 35G05 35Q75 35R01 83C57 PDF BibTeX XML Cite \textit{N. Besset} and \textit{D. Häfner}, J. Hyperbolic Differ. Equ. 18, No. 2, 293--310 (2021; Zbl 1482.35127) Full Text: DOI arXiv OpenURL