Carrasco-Olivera, D.; Morales, C. A.; Villavicencio, H. Stability and expansivity of tent map. (English) Zbl 07299117 Proc. Am. Math. Soc. 149, No. 2, 773-786 (2021). MSC: 37D20 37C70 PDF BibTeX XML Cite \textit{D. Carrasco-Olivera} et al., Proc. Am. Math. Soc. 149, No. 2, 773--786 (2021; Zbl 07299117) Full Text: DOI
Good, Chris; Macías, Sergio; Meddaugh, Jonathan; Mitchell, Joel; Thomas, Joe Expansivity and unique shadowing. (English) Zbl 07299109 Proc. Am. Math. Soc. 149, No. 2, 671-685 (2021). MSC: 37B05 37C50 PDF BibTeX XML Cite \textit{C. Good} et al., Proc. Am. Math. Soc. 149, No. 2, 671--685 (2021; Zbl 07299109) Full Text: DOI
Polyanin, Andrei D.; Sorokin, Vsevolod G. Construction of exact solutions to nonlinear PDEs with delay using solutions of simpler PDEs without delay. (English) Zbl 07299038 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105634, 15 p. (2021). MSC: 35K57 22E 35A 37C PDF BibTeX XML Cite \textit{A. D. Polyanin} and \textit{V. G. Sorokin}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105634, 15 p. (2021; Zbl 07299038) Full Text: DOI
Freiberg, Uta; Kohl, Stefan Box dimension of fractal attractors and their numerical computation. (English) Zbl 07299019 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105615, 19 p. (2021). MSC: 28A80 28A78 37C45 37D45 PDF BibTeX XML Cite \textit{U. Freiberg} and \textit{S. Kohl}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105615, 19 p. (2021; Zbl 07299019) Full Text: DOI
Puy, Andreu; Daza, Alvar; Wagemakers, Alexandre; Sanjuán, Miguel A. F. A test for fractal boundaries based on the basin entropy. (English) Zbl 07299003 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105588, 9 p. (2021). MSC: 37C 37N PDF BibTeX XML Cite \textit{A. Puy} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105588, 9 p. (2021; Zbl 07299003) Full Text: DOI
Cluckers, Raf; Friedland, Omer; Yomdin, Yosef Doubling coverings via resolution of singularities and preparation. (English) Zbl 07298841 Commun. Contemp. Math. 23, No. 2, Article ID 2050018, 23 p. (2021). MSC: 37C05 14E15 14P10 03C64 32B20 28D20 58K20 14G05 PDF BibTeX XML Cite \textit{R. Cluckers} et al., Commun. Contemp. Math. 23, No. 2, Article ID 2050018, 23 p. (2021; Zbl 07298841) Full Text: DOI
da Cunha, Rudnei D.; Oliveira, Elismar R.; Strobin, Filip A multiresolution algorithm to generate images of generalized fuzzy fractal attractors. (English) Zbl 07298622 Numer. Algorithms 86, No. 1, 223-256 (2021). MSC: 65 28A80 37C70 41A65 65S05 65P99 PDF BibTeX XML Cite \textit{R. D. da Cunha} et al., Numer. Algorithms 86, No. 1, 223--256 (2021; Zbl 07298622) Full Text: DOI
Chen, Lei Actions of 2-groups of bounded exponent on manifolds. (English) Zbl 07298378 Topology Appl. 288, Article ID 107473, 7 p. (2021). MSC: 37C85 57S25 PDF BibTeX XML Cite \textit{L. Chen}, Topology Appl. 288, Article ID 107473, 7 p. (2021; Zbl 07298378) Full Text: DOI
Ayadi, Adlene; Marzougui, Habib Corrigendum to: “Hypercyclic abelian semigroups of matrices on \(\mathbb{R}^n\)”. (English) Zbl 07297242 Topology Appl. 287, Article ID 107330, 8 p. (2021). MSC: 47A16 37C85 PDF BibTeX XML Cite \textit{A. Ayadi} and \textit{H. Marzougui}, Topology Appl. 287, Article ID 107330, 8 p. (2021; Zbl 07297242) Full Text: DOI
Gao, Rui Viana maps driven by Benedicks-Carleson quadratic maps. (English) Zbl 07291904 Trans. Am. Math. Soc. 374, No. 2, 1449-1495 (2021). MSC: 37D25 37C40 37E05 37F10 PDF BibTeX XML Cite \textit{R. Gao}, Trans. Am. Math. Soc. 374, No. 2, 1449--1495 (2021; Zbl 07291904) Full Text: DOI
Bárány, Balázs; Käenmäki, Antti; Rossi, Eino Assouad dimension of planar self-affine sets. (English) Zbl 07291899 Trans. Am. Math. Soc. 374, No. 2, 1297-1326 (2021). MSC: 28A80 37C45 37L30 PDF BibTeX XML Cite \textit{B. Bárány} et al., Trans. Am. Math. Soc. 374, No. 2, 1297--1326 (2021; Zbl 07291899) Full Text: DOI
Feng, Lirui; Wang, Yi; Wu, Jianhong Generic behavior of flows strongly monotone with respect to high-rank cones. (English) Zbl 07291360 J. Differ. Equations 275, 858-881 (2021). MSC: 37B25 37C10 37C20 37C65 PDF BibTeX XML Cite \textit{L. Feng} et al., J. Differ. Equations 275, 858--881 (2021; Zbl 07291360) Full Text: DOI
Wang, Juan; Cao, Yongluo; Zou, Rui The approximation of uniform hyperbolicity for \(C^1\) diffeomorphisms with hyperbolic measures. (English) Zbl 07291342 J. Differ. Equations 275, 359-390 (2021). MSC: 37D25 37C45 28D99 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Differ. Equations 275, 359--390 (2021; Zbl 07291342) Full Text: DOI
Sakhnovich, Alexander On the classes of explicit solutions of Dirac, dynamical Dirac and Dirac-Weyl systems with non-vanishing at infinity potentials, their properties and applications. (English) Zbl 07291338 J. Differ. Equations 275, 250-269 (2021). MSC: 34A05 34B20 35Q41 37C80 81Q05 PDF BibTeX XML Cite \textit{A. Sakhnovich}, J. Differ. Equations 275, 250--269 (2021; Zbl 07291338) Full Text: DOI
Zou, Rui; Cao, Yongluo Livšic theorems for Banach cocycles: existence and regularity. (English) Zbl 07290158 J. Funct. Anal. 280, No. 5, Article ID 108889, 38 p. (2021). MSC: 37A20 37C25 37D25 PDF BibTeX XML Cite \textit{R. Zou} and \textit{Y. Cao}, J. Funct. Anal. 280, No. 5, Article ID 108889, 38 p. (2021; Zbl 07290158) Full Text: DOI
Li, Yipeng; Liu, Xiaogang; Zhang, Shenggui; Zhou, Sanming Perfect state transfer in NEPS of complete graphs. (English) Zbl 07289374 Discrete Appl. Math. 289, 98-114 (2021). MSC: 81Q35 81P68 05C81 37C30 15A04 PDF BibTeX XML Cite \textit{Y. Li} et al., Discrete Appl. Math. 289, 98--114 (2021; Zbl 07289374) Full Text: DOI
Li, Min; Li, Xiong Boundedness in asymmetric oscillations under the non-resonant case. (English) Zbl 07289117 J. Differ. Equations 274, 828-856 (2021). MSC: 34C15 37C60 34C11 PDF BibTeX XML Cite \textit{M. Li} and \textit{X. Li}, J. Differ. Equations 274, 828--856 (2021; Zbl 07289117) Full Text: DOI
Bomfim, Thiago; Torres, Maria Joana; Varandas, Paulo Gluing orbit property and partial hyperbolicity. (English) Zbl 07285687 J. Differ. Equations 272, 203-221 (2021). MSC: 37B40 37C10 37C35 37C50 37C27 PDF BibTeX XML Cite \textit{T. Bomfim} et al., J. Differ. Equations 272, 203--221 (2021; Zbl 07285687) Full Text: DOI
Hall, Layne; Hammerlindl, Andy Partially hyperbolic surface endomorphisms. (English) Zbl 07282577 Ergodic Theory Dyn. Syst. 41, No. 1, 272-282 (2021). MSC: 37D30 37C05 57R30 PDF BibTeX XML Cite \textit{L. Hall} and \textit{A. Hammerlindl}, Ergodic Theory Dyn. Syst. 41, No. 1, 272--282 (2021; Zbl 07282577) Full Text: DOI
Arcostanzo, Marc The \(C^0\) integrability of symplectic twist maps without conjugate points. (English) Zbl 07282573 Ergodic Theory Dyn. Syst. 41, No. 1, 48-65 (2021). MSC: 37C25 37E40 37J35 37J45 PDF BibTeX XML Cite \textit{M. Arcostanzo}, Ergodic Theory Dyn. Syst. 41, No. 1, 48--65 (2021; Zbl 07282573) Full Text: DOI
Addas-Zanata, Salvador; De Paula Jacoia, Bruno A condition that implies full homotopical complexity of orbits for surface homeomorphisms. (English) Zbl 07282570 Ergodic Theory Dyn. Syst. 41, No. 1, 1-47 (2021). MSC: 37E30 37E45 37D25 37C25 PDF BibTeX XML Cite \textit{S. Addas-Zanata} and \textit{B. De Paula Jacoia}, Ergodic Theory Dyn. Syst. 41, No. 1, 1--47 (2021; Zbl 07282570) Full Text: DOI
Jin, Xin; Zhang, Pengfei Hyperbolicity of asymmetric lemon billiards. (English) Zbl 07278341 Nonlinearity 34, No. 1, 92-117 (2021). MSC: 37C83 37D20 37D25 37D30 PDF BibTeX XML Cite \textit{X. Jin} and \textit{P. Zhang}, Nonlinearity 34, No. 1, 92--117 (2021; Zbl 07278341) Full Text: DOI
Szőke, Nóra Gabriella A Tits alternative for topological full groups. (English) Zbl 07277639 Ergodic Theory Dyn. Syst. 41, No. 2, 622-640 (2021). MSC: 37B05 43A07 20F65 37C85 22F05 22F10 PDF BibTeX XML Cite \textit{N. G. Szőke}, Ergodic Theory Dyn. Syst. 41, No. 2, 622--640 (2021; Zbl 07277639) Full Text: DOI
Qiao, Jianyong; Qu, Hongyu; Zhang, Guangyuan The numbers of periodic orbits hidden at fixed points of holomorphic maps. (English) Zbl 07277636 Ergodic Theory Dyn. Syst. 41, No. 2, 578-592 (2021). MSC: 32H50 37C25 37F46 37F50 PDF BibTeX XML Cite \textit{J. Qiao} et al., Ergodic Theory Dyn. Syst. 41, No. 2, 578--592 (2021; Zbl 07277636) Full Text: DOI
Chen, An; Tian, Xueting Distributional chaos in multifractal analysis, recurrence and transitivity. (English) Zbl 07277627 Ergodic Theory Dyn. Syst. 41, No. 2, 349-378 (2021). MSC: 37B05 37B20 37D45 37C45 PDF BibTeX XML Cite \textit{A. Chen} and \textit{X. Tian}, Ergodic Theory Dyn. Syst. 41, No. 2, 349--378 (2021; Zbl 07277627) Full Text: DOI
Kloeden, Peter E.; Yang, Meihua An introduction to nonautonomous dynamical systems and their attractors (to appear). (English) Zbl 07275178 Interdisciplinary Mathematical Sciences 21. Hackensack, NJ: World Scientific (ISBN 978-981-12-2865-0/hbk). 160 p. (2021). MSC: 37-01 37B55 37C60 37C70 37G35 37D45 PDF BibTeX XML Cite \textit{P. E. Kloeden} and \textit{M. Yang}, An introduction to nonautonomous dynamical systems and their attractors (to appear). Hackensack, NJ: World Scientific (2021; Zbl 07275178) Full Text: DOI
Brasil, Jader E.; Lopes, Artur O.; Mengue, Jairo K.; Moreira, Carlos G. Quantum spin probabilities at positive temperature are Hölder Gibbs probabilities. (English) Zbl 07266069 Commun. Contemp. Math. 23, No. 1, Article ID 1950050, 32 p. (2021). MSC: 37D35 37C45 81Q10 81Q35 PDF BibTeX XML Cite \textit{J. E. Brasil} et al., Commun. Contemp. Math. 23, No. 1, Article ID 1950050, 32 p. (2021; Zbl 07266069) Full Text: DOI
Berndt, Jürgen; Suh, Young Jin Real hypersurfaces with isometric Reeb flow in Kähler manifolds. (English) Zbl 07266067 Commun. Contemp. Math. 23, No. 1, Article ID 1950039, 33 p. (2021). MSC: 53C40 32M15 37C10 53C55 53D15 PDF BibTeX XML Cite \textit{J. Berndt} and \textit{Y. J. Suh}, Commun. Contemp. Math. 23, No. 1, Article ID 1950039, 33 p. (2021; Zbl 07266067) Full Text: DOI
Wang, Yunping Weighted mean topological dimension. (English) Zbl 07265516 J. Math. Anal. Appl. 493, No. 1, Article ID 124524, 13 p. (2021). Reviewer: Mihai Turinici (Iaşi) MSC: 37C45 37B40 54F45 PDF BibTeX XML Cite \textit{Y. Wang}, J. Math. Anal. Appl. 493, No. 1, Article ID 124524, 13 p. (2021; Zbl 07265516) Full Text: DOI
Bhaumik, Shantanu General integral type contraction mapping in metric space endowed with a graph. (English) Zbl 07246099 Electron. J. Math. Analysis Appl. 9, No. 1, 322-333 (2021). MSC: 47H10 54H25 37C25 55M20 PDF BibTeX XML Cite \textit{S. Bhaumik}, Electron. J. Math. Analysis Appl. 9, No. 1, 322--333 (2021; Zbl 07246099) Full Text: Link
Fassò, Francesco; Passarella, Simone; Zoppello, Marta Control of locomotion systems and dynamics in relative periodic orbits. (English) Zbl 07300132 J. Geom. Mech. 12, No. 3, 395-420 (2020). MSC: 37N35 37C80 34H05 70Q05 70E60 PDF BibTeX XML Cite \textit{F. Fassò} et al., J. Geom. Mech. 12, No. 3, 395--420 (2020; Zbl 07300132) Full Text: DOI
Kaouache, Smail; Abdelouahab, Mohammed Salah; Bououden, Rabah Reduced generalized combination synchronization between two \(n\)-dimensional integer-order hyperchaotic systems and one \(m\)-dimensional fractional-order chaotic system. (English) Zbl 07299949 Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 19, 8 p. (2020). MSC: 34A34 37B25 37B55 93C55 37C25 PDF BibTeX XML Cite \textit{S. Kaouache} et al., Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 19, 8 p. (2020; Zbl 07299949) Full Text: Link
Lee, Manseob Orbital shadowing property on chain transitive sets for generic diffeomorphisms. (English) Zbl 07299300 Acta Univ. Sapientiae, Math. 12, No. 1, 146-154 (2020). MSC: 37C50 34D10 PDF BibTeX XML Cite \textit{M. Lee}, Acta Univ. Sapientiae, Math. 12, No. 1, 146--154 (2020; Zbl 07299300) Full Text: DOI
Bonomo, Wescley; Varandas, Paulo Continuous flows generate few homeomorphisms. (English) Zbl 07298491 Proc. Edinb. Math. Soc., II. Ser. 63, No. 4, 971-983 (2020). MSC: 37C10 54C25 54H20 37B40 37E30 PDF BibTeX XML Cite \textit{W. Bonomo} and \textit{P. Varandas}, Proc. Edinb. Math. Soc., II. Ser. 63, No. 4, 971--983 (2020; Zbl 07298491) Full Text: DOI
Elomari, M.; Melliani, S.; Chadli, L. S. Conform fractional semi-dynamical systems. (English) Zbl 07296465 Nonlinear Dyn. Syst. Theory 20, No. 5, 502-511 (2020). MSC: 37-XX 37Cxx 34Cxx 34Dxx PDF BibTeX XML Cite \textit{M. Elomari} et al., Nonlinear Dyn. Syst. Theory 20, No. 5, 502--511 (2020; Zbl 07296465) Full Text: Link
Al-Khatatneh, O. A.; Al-Badarneh, A. A. Asymptotic behavior in product and conjugate dynamical systems using bishadowing properties. (English) Zbl 07296463 Nonlinear Dyn. Syst. Theory 20, No. 5, 479-489 (2020). MSC: 37C50 PDF BibTeX XML Cite \textit{O. A. Al-Khatatneh} and \textit{A. A. Al-Badarneh}, Nonlinear Dyn. Syst. Theory 20, No. 5, 479--489 (2020; Zbl 07296463) Full Text: Link
Feng, Junwei; Liu, Hui; Xin, Jie Pullback attractors of non-autonomous three-component reversible Gray-Scott system on unbounded domains. (Chinese. English summary) Zbl 07295605 J. Qufu Norm. Univ., Nat. Sci. 46, No. 3, 35-39 (2020). MSC: 35B41 37C60 37C70 PDF BibTeX XML Cite \textit{J. Feng} et al., J. Qufu Norm. Univ., Nat. Sci. 46, No. 3, 35--39 (2020; Zbl 07295605) Full Text: DOI
Ji, Zhanjiang; Zhang, Gengrong Dynamical properties of almost periodic point and pointwise periodic shadowing property under strongly uniform convergence. (Chinese. English summary) Zbl 07295570 J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 2, 30-34 (2020). MSC: 37C25 37C50 37B45 PDF BibTeX XML Cite \textit{Z. Ji} and \textit{G. Zhang}, J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 2, 30--34 (2020; Zbl 07295570) Full Text: DOI
Ji, Zhanjiang; Shi, Wei The research on strong shadowing property and limit shadowing property in the product metric \(G\)-space. (Chinese. English summary) Zbl 07295354 J. Inn. Mong. Norm. Univ., Nat. Sci. 49, No. 3, 189-193 (2020). MSC: 37C50 54E40 PDF BibTeX XML Cite \textit{Z. Ji} and \textit{W. Shi}, J. Inn. Mong. Norm. Univ., Nat. Sci. 49, No. 3, 189--193 (2020; Zbl 07295354) Full Text: DOI
Xiao, Zheheng; Wang, Jiasheng On the explicit Alekseev-Meinrenken diffeomorphisms. (English) Zbl 07294975 Adv. Math., Beijing 49, No. 5, 561-572 (2020). MSC: 37C05 15B57 PDF BibTeX XML Cite \textit{Z. Xiao} and \textit{J. Wang}, Adv. Math., Beijing 49, No. 5, 561--572 (2020; Zbl 07294975) Full Text: DOI
Larios, Adam; Pei, Yuan Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data. (English) Zbl 07293770 Evol. Equ. Control Theory 9, No. 3, 733-751 (2020). MSC: 35Q30 37C50 93C20 76B75 34D06 PDF BibTeX XML Cite \textit{A. Larios} and \textit{Y. Pei}, Evol. Equ. Control Theory 9, No. 3, 733--751 (2020; Zbl 07293770) Full Text: DOI
Rotker, Keren; Ben Bashat, Dafna; Bronstein, Alex M. Overparameterized models for vector fields. (English) Zbl 07292229 SIAM J. Imaging Sci. 13, No. 3, 1386-1414 (2020). MSC: 47N10 35A15 49N45 68U10 17B66 37C10 46N10 PDF BibTeX XML Cite \textit{K. Rotker} et al., SIAM J. Imaging Sci. 13, No. 3, 1386--1414 (2020; Zbl 07292229) Full Text: DOI
Zhu, Bin; Wei, Zhouchao; Escalante-González, R. J.; Kuznetsov, Nikolay V. Existence of homoclinic orbits and heteroclinic cycle in a class of three-dimensional piecewise linear systems with three switching manifolds. (English) Zbl 07291860 Chaos 30, No. 12, 123143, 12 p. (2020). MSC: 37C29 37C75 PDF BibTeX XML Cite \textit{B. Zhu} et al., Chaos 30, No. 12, 123143, 12 p. (2020; Zbl 07291860) Full Text: DOI
Biccari, Umberto; Marica, Aurora; Zuazua, Enrique Propagation of one- and two-dimensional discrete waves under finite difference approximation. (English) Zbl 07290663 Found. Comput. Math. 20, No. 6, 1401-1438 (2020). MSC: 65M06 35A21 37C05 70K05 PDF BibTeX XML Cite \textit{U. Biccari} et al., Found. Comput. Math. 20, No. 6, 1401--1438 (2020; Zbl 07290663) Full Text: DOI
Alves, José F. Nonuniformly hyperbolic attractors. Geometric and probabilistic aspects. () Zbl 07290347 Springer Monographs in Mathematics. Cham: Springer (ISBN 978-3-030-62813-0/hbk; 978-3-030-62814-7/ebook). xi, 259 p. (2020). MSC: 37-01 37D25 37C70 PDF BibTeX XML Cite \textit{J. F. Alves}, Nonuniformly hyperbolic attractors. Geometric and probabilistic aspects. Cham: Springer (2020; Zbl 07290347) Full Text: DOI
Banakh, Taras; Nowak, Magdalena; Strobin, Filip Embedding fractals in Banach, Hilbert or Euclidean spaces. (English) Zbl 07290138 J. Fractal Geom. 7, No. 4, 351-386 (2020). Reviewer: George Stoica (Saint John) MSC: 28A80 37C25 37C70 PDF BibTeX XML Cite \textit{T. Banakh} et al., J. Fractal Geom. 7, No. 4, 351--386 (2020; Zbl 07290138) Full Text: DOI
Hare, Kathryn E.; Hare, Kevin G.; Troscheit, Sascha Quasi-doubling of self-similar measures with overlaps. (English) Zbl 07290134 J. Fractal Geom. 7, No. 3, 233-270 (2020). MSC: 28A80 28C15 37C45 PDF BibTeX XML Cite \textit{K. E. Hare} et al., J. Fractal Geom. 7, No. 3, 233--270 (2020; Zbl 07290134) Full Text: DOI
Strobin, Filip; Swaczyna, Jaroslaw Connectedness of attractors of a certain family of IFSs. (English) Zbl 07290133 J. Fractal Geom. 7, No. 3, 219-231 (2020). MSC: 28A80 37C25 37C70 54E52 PDF BibTeX XML Cite \textit{F. Strobin} and \textit{J. Swaczyna}, J. Fractal Geom. 7, No. 3, 219--231 (2020; Zbl 07290133) Full Text: DOI
Khojasteh, Farshid; Khandani, Hassan Scrutiny of some fixed point results by \(S\)-operators without triangular inequality. (English) Zbl 07289654 Math. Slovaca 70, No. 2, 467-476 (2020). MSC: 47H10 37C25 PDF BibTeX XML Cite \textit{F. Khojasteh} and \textit{H. Khandani}, Math. Slovaca 70, No. 2, 467--476 (2020; Zbl 07289654) Full Text: DOI
Klopp, F.; Fedotov, A. A. On the hierarchical behavior of solutions of the Maryland equation in the semiclassical approximation. (English. Russian original) Zbl 07289087 Math. Notes 108, No. 6, 906-910 (2020); translation from Mat. Zametki 108, No. 6, 941-946 (2020). MSC: 81Q05 39A12 39A06 37C55 93A13 PDF BibTeX XML Cite \textit{F. Klopp} and \textit{A. A. Fedotov}, Math. Notes 108, No. 6, 906--910 (2020; Zbl 07289087); translation from Mat. Zametki 108, No. 6, 941--946 (2020) Full Text: DOI
Osipenko, G. S. Mean convergence of periodic pseudotrajectories and invariant measures of dynamical systems. (English. Russian original) Zbl 07289080 Math. Notes 108, No. 6, 854-866 (2020); translation from Mat. Zametki 108, No. 6, 882-898 (2020). MSC: 37C 37D PDF BibTeX XML Cite \textit{G. S. Osipenko}, Math. Notes 108, No. 6, 854--866 (2020; Zbl 07289080); translation from Mat. Zametki 108, No. 6, 882--898 (2020) Full Text: DOI
Leyvraz, F. Qualitative properties of systems of two complex homogeneous ODE’s: a connection to polygonal billiards. (English) Zbl 07287243 J. Math. Phys. 61, No. 9, 092705, 14 p. (2020). MSC: 37C83 PDF BibTeX XML Cite \textit{F. Leyvraz}, J. Math. Phys. 61, No. 9, 092705, 14 p. (2020; Zbl 07287243) Full Text: DOI
Xu, Hui; Shi, Enhui; Wang, Yiruo Invariant Radon measures and minimal sets for subgroups of \(\text{Homeo}_+(\mathbb{R})\). (English) Zbl 07286621 Topology Appl. 285, Article ID 107378, 12 p. (2020). MSC: 37E05 37C85 PDF BibTeX XML Cite \textit{H. Xu} et al., Topology Appl. 285, Article ID 107378, 12 p. (2020; Zbl 07286621) Full Text: DOI
Naud, Frédéric Hyperbolic dynamics meet Fourier analysis, an Invitation to the book. Book review of: V. Baladi, Dynamical zeta functions and dynamical determinants for hyperbolic maps. A functional approach. (English) Zbl 07286455 Jahresber. Dtsch. Math.-Ver. 122, No. 4, 263-268 (2020). MSC: 00A17 37-02 37C30 37D20 37D35 37F15 37A45 46E35 PDF BibTeX XML Cite \textit{F. Naud}, Jahresber. Dtsch. Math.-Ver. 122, No. 4, 263--268 (2020; Zbl 07286455) Full Text: DOI
Hadfield, Charles; Kandel, Santosh; Schiavina, Michele Ruelle zeta function from field theory. (English) Zbl 07285802 Ann. Henri Poincaré 21, No. 12, 3835-3867 (2020). MSC: 58J52 83C47 37C30 81T20 70S 53D10 11M PDF BibTeX XML Cite \textit{C. Hadfield} et al., Ann. Henri Poincaré 21, No. 12, 3835--3867 (2020; Zbl 07285802) Full Text: DOI
Petkov, Vesselin; Stoyanov, Luchezar Sharp large deviations for hyperbolic flows. (English) Zbl 07285801 Ann. Henri Poincaré 21, No. 12, 3791-3834 (2020). MSC: 37D35 37D40 60F10 37D20 37C30 37D40 PDF BibTeX XML Cite \textit{V. Petkov} and \textit{L. Stoyanov}, Ann. Henri Poincaré 21, No. 12, 3791--3834 (2020; Zbl 07285801) Full Text: DOI
Dzedzej, Zdzisław Bounded solutions of odd nonautonomous ODE. (English) Zbl 07285185 Topology Appl. 282, Article ID 107318, 7 p. (2020). Reviewer: Rodica Luca (Iaşi) MSC: 34C11 34C14 37C60 PDF BibTeX XML Cite \textit{Z. Dzedzej}, Topology Appl. 282, Article ID 107318, 7 p. (2020; Zbl 07285185) Full Text: DOI
Kawaguchi, Noriaki Hyperbolic homeomorphisms of countable compacta. (English) Zbl 07285165 Topology Appl. 282, Article ID 107291, 11 p. (2020). MSC: 37C50 37D20 54F50 54H20 PDF BibTeX XML Cite \textit{N. Kawaguchi}, Topology Appl. 282, Article ID 107291, 11 p. (2020; Zbl 07285165) Full Text: DOI
Ilea, Veronica; Otrocol, Diana On the Burton method of progressive contractions for Volterra integral equations. (English) Zbl 07285146 Fixed Point Theory 21, No. 2, 585-594 (2020). MSC: 45J05 37C25 47H10 47H09 PDF BibTeX XML Cite \textit{V. Ilea} and \textit{D. Otrocol}, Fixed Point Theory 21, No. 2, 585--594 (2020; Zbl 07285146) Full Text: Link
Cantat, Serge Endomorphisms and bijections of the character variety \(\chi (\protect \mathbf{F}_2,\protect \mathsf{SL}_2(\protect \mathbf{C}))\). (English. French summary) Zbl 07283622 Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 4, 897-906 (2020). MSC: 37F 37C 30F 57M 34M PDF BibTeX XML Cite \textit{S. Cantat}, Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 4, 897--906 (2020; Zbl 07283622) Full Text: DOI
Selmi, Bilel Appendix to the paper “On the Billingsley dimension of Birkhoff average in the countable symbolic space”. (English) Zbl 07283174 C. R., Math., Acad. Sci. Paris 358, No. 8, 939 (2020). MSC: 37B 37C 37A 28A PDF BibTeX XML Cite \textit{B. Selmi}, C. R., Math., Acad. Sci. Paris 358, No. 8, 939 (2020; Zbl 07283174) Full Text: DOI
Hong, Shihuang; Zhou, Jie; Chen, Ji; Hou, Haiyang; Wang, Li Discussion on the existence of best proximity points in metric spaces. (English) Zbl 07282707 Fixed Point Theory 21, No. 1, 191-210 (2020). MSC: 37C25 47H10 PDF BibTeX XML Cite \textit{S. Hong} et al., Fixed Point Theory 21, No. 1, 191--210 (2020; Zbl 07282707) Full Text: Link
da Costa, Diogo Ricardo; Palmero, Matheus S.; Méndez-Bermúdez, J. A.; Iarosz, Kelly C.; Szezech, José D. jun.; Batista, Antonio M. Tilted-hat mushroom billiards: web-like hierarchical mixed phase space. (English) Zbl 07281814 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105440, 9 p. (2020). MSC: 37C83 37C35 70K55 PDF BibTeX XML Cite \textit{D. R. da Costa} et al., Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105440, 9 p. (2020; Zbl 07281814) Full Text: DOI
da Cunha, Rudnei D.; Oliveira, Elismar R.; Strobin, Filip A multiresolution algorithm to approximate the Hutchinson measure for IFS and GIFS. (English) Zbl 07281798 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105423, 22 p. (2020). MSC: 28A80 37C70 41A65 65S05 PDF BibTeX XML Cite \textit{R. D. da Cunha} et al., Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105423, 22 p. (2020; Zbl 07281798) Full Text: DOI
Chen, Yuanlong; Li, Liangliang; Wu, Xiaoying; Wang, Feng The structural stability of maps with heteroclinic repellers. (English) Zbl 07281771 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050207, 10 p. (2020). MSC: 37C20 37C70 37C29 37B40 PDF BibTeX XML Cite \textit{Y. Chen} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050207, 10 p. (2020; Zbl 07281771) Full Text: DOI
Li, Chunbiao; Sun, Jiayu; Sprott, Julien Clinton; Lei, Tengfei Hidden attractors with conditional symmetry. (English) Zbl 07281762 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2030042, 14 p. (2020). MSC: 37C79 37C70 37D45 94C05 PDF BibTeX XML Cite \textit{C. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2030042, 14 p. (2020; Zbl 07281762) Full Text: DOI
Gardini, Laura; Tikjha, Wirot Milnor and topological attractors in a family of two-dimensional Lotka-Volterra maps. (English) Zbl 07281760 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2030040, 29 p. (2020). MSC: 37G35 37C70 PDF BibTeX XML Cite \textit{L. Gardini} and \textit{W. Tikjha}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2030040, 29 p. (2020; Zbl 07281760) Full Text: DOI
Shen, Yunzhu; Zhang, Yongxiang; Jafari, Sajad Coexistence of strange nonchaotic attractors in a quasiperiodically forced dynamical map. (English) Zbl 07281741 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 13, Article ID 2050183, 20 p. (2020). MSC: 37D45 37G35 37C70 PDF BibTeX XML Cite \textit{Y. Shen} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 13, Article ID 2050183, 20 p. (2020; Zbl 07281741) Full Text: DOI
Lu, Kening; Zhang, Weinian; Zhang, Wenmeng \(C^1\) Hartman theorem for random dynamical systems. (English) Zbl 07281401 Adv. Math. 375, Article ID 107375, 46 p. (2020). MSC: 37H30 37C15 PDF BibTeX XML Cite \textit{K. Lu} et al., Adv. Math. 375, Article ID 107375, 46 p. (2020; Zbl 07281401) Full Text: DOI
Cheng, Dandan; Li, Zhiming Mean dimensions for partial actions. (English) Zbl 07281383 J. Difference Equ. Appl. 26, No. 4, 561-573 (2020). MSC: 37C85 37C45 PDF BibTeX XML Cite \textit{D. Cheng} and \textit{Z. Li}, J. Difference Equ. Appl. 26, No. 4, 561--573 (2020; Zbl 07281383) Full Text: DOI
Sultanov, Oskar A. Bifurcations of autoresonant modes in oscillating systems with combined excitation. (English) Zbl 07279095 Stud. Appl. Math. 144, No. 2, 213-241 (2020). MSC: 34C15 34C23 37C60 PDF BibTeX XML Cite \textit{O. A. Sultanov}, Stud. Appl. Math. 144, No. 2, 213--241 (2020; Zbl 07279095) Full Text: DOI
Grines, V.; Gurevich, E.; Pochinka, O.; Malyshev, D. On topological classification of Morse-Smale diffeomorphisms on the sphere \(S^n\) \((n>3)\). (English) Zbl 07278338 Nonlinearity 33, No. 12, 7088-7113 (2020). Reviewer: Vladimir P. Kostov (Nice) MSC: 37C15 37C05 37C79 37D15 37E15 PDF BibTeX XML Cite \textit{V. Grines} et al., Nonlinearity 33, No. 12, 7088--7113 (2020; Zbl 07278338) Full Text: DOI
Hou, Zhanyuan On existence and uniqueness of a carrying simplex in Kolmogorov differential systems. (English) Zbl 07278337 Nonlinearity 33, No. 12, 7067-7087 (2020). MSC: 37C29 37C10 37C70 37C75 PDF BibTeX XML Cite \textit{Z. Hou}, Nonlinearity 33, No. 12, 7067--7087 (2020; Zbl 07278337) Full Text: DOI
Bilbao, Rafael A.; Bioni, Ricardo; Lucena, Rafael Hölder regularity and exponential decay of correlations for a class of piecewise partially hyperbolic maps. (English) Zbl 07278332 Nonlinearity 33, No. 12, 6790-6818 (2020). MSC: 37D30 37D20 37C30 PDF BibTeX XML Cite \textit{R. A. Bilbao} et al., Nonlinearity 33, No. 12, 6790--6818 (2020; Zbl 07278332) Full Text: DOI
Thomine, Damien Sinai billiard maps with Ruelle resonances. (English) Zbl 07278330 Nonlinearity 33, No. 12, 6971-6984 (2020). MSC: 37C83 37A25 37D20 37C30 37C81 PDF BibTeX XML Cite \textit{D. Thomine}, Nonlinearity 33, No. 12, 6971--6984 (2020; Zbl 07278330) Full Text: DOI
Zhang, Wenda; Li, Zhiqiang; Zhou, Yunhua Unstable metric pressure of partially hyperbolic diffeomorphisms with sub-additive potentials. (English) Zbl 07278328 Nonlinearity 33, No. 12, 6915-6934 (2020). MSC: 37D35 37D30 37C40 PDF BibTeX XML Cite \textit{W. Zhang} et al., Nonlinearity 33, No. 12, 6915--6934 (2020; Zbl 07278328) Full Text: DOI
Hafouta, Yeor Limit theorems for some time-dependent expanding dynamical systems. (English) Zbl 07278313 Nonlinearity 33, No. 12, 6421-6460 (2020). Reviewer: George Stoica (Saint John) MSC: 37A50 37C30 37C40 60F05 60F10 PDF BibTeX XML Cite \textit{Y. Hafouta}, Nonlinearity 33, No. 12, 6421--6460 (2020; Zbl 07278313) Full Text: DOI
Crimmins, Harry; Froyland, Gary Fourier approximation of the statistical properties of Anosov maps on tori. (English) Zbl 07278309 Nonlinearity 33, No. 11, 6244-6296 (2020). MSC: 37M25 37C30 37D20 PDF BibTeX XML Cite \textit{H. Crimmins} and \textit{G. Froyland}, Nonlinearity 33, No. 11, 6244--6296 (2020; Zbl 07278309) Full Text: DOI
Slipantschuk, J.; Richter, Martin; Chappell, David J.; Tanner, Gregor; Just, W.; Bandtlow, O. F. Transfer operator approach to ray-tracing in circular domains. (English) Zbl 07278290 Nonlinearity 33, No. 11, 5773-5790 (2020). MSC: 37M25 37C30 74H45 PDF BibTeX XML Cite \textit{J. Slipantschuk} et al., Nonlinearity 33, No. 11, 5773--5790 (2020; Zbl 07278290) Full Text: DOI
Marques, André L.; Tozatti, Hélio V. M.; Souza, Josiney A. Higher prolongations of control affine systems: absolute stability and generalized recurrence. (English) Zbl 07277847 SIAM J. Control Optim. 58, No. 6, 3019-3040 (2020). MSC: 37N35 37C75 34C27 34D05 93D05 PDF BibTeX XML Cite \textit{A. L. Marques} et al., SIAM J. Control Optim. 58, No. 6, 3019--3040 (2020; Zbl 07277847) Full Text: DOI
Kravchenko, Anna; Feshchenko, Bohdan Automorphisms of Kronrod-Reeb graphs of Morse functions on 2-torus. (English) Zbl 07277753 Methods Funct. Anal. Topol. 26, No. 1, 88-96 (2020). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 57S05 57R45 37C05 PDF BibTeX XML Cite \textit{A. Kravchenko} and \textit{B. Feshchenko}, Methods Funct. Anal. Topol. 26, No. 1, 88--96 (2020; Zbl 07277753) Full Text: Link
Aimino, Romain; Liverani, Carlangelo Deterministic walks in random environment. (English) Zbl 07276923 Ann. Probab. 48, No. 5, 2212-2257 (2020). MSC: 37A25 37C30 PDF BibTeX XML Cite \textit{R. Aimino} and \textit{C. Liverani}, Ann. Probab. 48, No. 5, 2212--2257 (2020; Zbl 07276923) Full Text: DOI Euclid
Grines, Vyacheslav Z.; Kurenkov, Evgeny D. Diffeomorphisms of 2-manifolds with one-dimensional spaciously situated basic sets. (English. Russian original) Zbl 07276781 Izv. Math. 84, No. 5, 862-909 (2020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 5, 40-97 (2020). Reviewer: Vladimir P. Kostov (Nice) MSC: 37D20 37C70 37C15 PDF BibTeX XML Cite \textit{V. Z. Grines} and \textit{E. D. Kurenkov}, Izv. Math. 84, No. 5, 862--909 (2020; Zbl 07276781); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 5, 40--97 (2020) Full Text: DOI
Nikolaenko, Stanislav S. Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds. (English. Russian original) Zbl 07276775 Sb. Math. 211, No. 8, 1127-1158 (2020); translation from Mat. Sb. 211, No. 8, 68-101 (2020). MSC: 37J39 37J35 37C15 37G10 58K45 70H06 PDF BibTeX XML Cite \textit{S. S. Nikolaenko}, Sb. Math. 211, No. 8, 1127--1158 (2020; Zbl 07276775); translation from Mat. Sb. 211, No. 8, 68--101 (2020) Full Text: DOI
Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh. One class of structurally stable endomorphisms on an infinite-dimensional torus. (English. Russian original) Zbl 07276436 Differ. Equ. 56, No. 10, 1382-1386 (2020); translation from Differ. Uravn. 56, No. 10, 1412-1416 (2020). MSC: 37C85 37E30 57S05 PDF BibTeX XML Cite \textit{S. D. Glyzin} et al., Differ. Equ. 56, No. 10, 1382--1386 (2020; Zbl 07276436); translation from Differ. Uravn. 56, No. 10, 1412--1416 (2020) Full Text: DOI
Lapin, K. S. Lyapunov vector functions, Krasnosel’skii canonical domains, and existence of Poisson bounded solutions. (English. Russian original) Zbl 07276423 Differ. Equ. 56, No. 10, 1270-1275 (2020); translation from Differ. Uravn. 56, No. 10, 1304-1309 (2020). Reviewer: Babatunde Ogundare (Ile-Ife) MSC: 34C11 37C60 PDF BibTeX XML Cite \textit{K. S. Lapin}, Differ. Equ. 56, No. 10, 1270--1275 (2020; Zbl 07276423); translation from Differ. Uravn. 56, No. 10, 1304--1309 (2020) Full Text: DOI
Deroin, Bertrand Locally discrete expanding groups of analytic diffeomorphisms of the circle. (English) Zbl 07276406 J. Topol. 13, No. 3, 1216-1229 (2020). MSC: 37C85 37E10 20E06 37D25 57S05 PDF BibTeX XML Cite \textit{B. Deroin}, J. Topol. 13, No. 3, 1216--1229 (2020; Zbl 07276406) Full Text: DOI
Bonatti, Christian; Gogolev, Andrey; Hammerlindl, Andy; Potrie, Rafael Anomalous partially hyperbolic diffeomorphisms. III: Abundance and incoherence. (English) Zbl 07274789 Geom. Topol. 24, No. 4, 1751-1790 (2020). MSC: 37D30 37C15 PDF BibTeX XML Cite \textit{C. Bonatti} et al., Geom. Topol. 24, No. 4, 1751--1790 (2020; Zbl 07274789) Full Text: DOI
Ferreira, Hermes H.; Lopes, Artur O.; Oliveira, Elismar R. Explicit examples in ergodic optimization. (English) Zbl 07274368 São Paulo J. Math. Sci. 14, No. 2, 443-480 (2020). MSC: 37M25 37C30 37A25 90C05 PDF BibTeX XML Cite \textit{H. H. Ferreira} et al., São Paulo J. Math. Sci. 14, No. 2, 443--480 (2020; Zbl 07274368) Full Text: DOI
Díaz-Miguel Bermúdez, Eduardo Conformal transformations and Maupertius’ principle: a physical interpretation of polygonal billiards. (Spanish) Zbl 07274296 Gac. R. Soc. Mat. Esp. 23, No. 1, 77-92 (2020). MSC: 70 37C83 PDF BibTeX XML Cite \textit{E. Díaz-Miguel Bermúdez}, Gac. R. Soc. Mat. Esp. 23, No. 1, 77--92 (2020; Zbl 07274296)
Pollicott, Mark Dynamical zeta functions and the distribution of orbits. (English) Zbl 07274146 Ji, Lizhen (ed.) et al., Handbook of group actions V. Somerville, MA: International Press; Bejing: Higher Education Press (ISBN 978-1-57146-390-6/pbk). Advanced Lectures in Mathematics (ALM) 48, 399-440 (2020). MSC: 37C30 37C27 37C35 37A44 11M36 PDF BibTeX XML Cite \textit{M. Pollicott}, in: Handbook of group actions V. Somerville, MA: International Press; Bejing: Higher Education Press. 399--440 (2020; Zbl 07274146)
Ceccherini-Silberstein, Tullio; Coornaert, Michel The Garden of Eden theorem: old and new. (English) Zbl 07274138 Ji, Lizhen (ed.) et al., Handbook of group actions V. Somerville, MA: International Press; Bejing: Higher Education Press (ISBN 978-1-57146-390-6/pbk). Advanced Lectures in Mathematics (ALM) 48, 55-106 (2020). Reviewer: Laurent Bartholdi (Göttingen) MSC: 37B15 37B10 37B40 37C29 37D20 PDF BibTeX XML Cite \textit{T. Ceccherini-Silberstein} and \textit{M. Coornaert}, in: Handbook of group actions V. Somerville, MA: International Press; Bejing: Higher Education Press. 55--106 (2020; Zbl 07274138)
Jung, Woochul; Lee, Keonhee; Morales, Carlos; Oh, Jumi Rigidity of random group actions. (English) Zbl 07273500 Discrete Contin. Dyn. Syst. 40, No. 12, 6845-6854 (2020). MSC: 37C85 37B25 37B65 37H12 PDF BibTeX XML Cite \textit{W. Jung} et al., Discrete Contin. Dyn. Syst. 40, No. 12, 6845--6854 (2020; Zbl 07273500) Full Text: DOI
Hittmeyer, Stefanie; Krauskopf, Bernd; Osinga, Hinke M.; Shinohara, Katsutoshi How to identify a hyperbolic set as a blender. (English) Zbl 07273498 Discrete Contin. Dyn. Syst. 40, No. 12, 6815-6836 (2020). MSC: 37D05 37D25 37D10 37C05 37G25 37M21 PDF BibTeX XML Cite \textit{S. Hittmeyer} et al., Discrete Contin. Dyn. Syst. 40, No. 12, 6815--6836 (2020; Zbl 07273498) Full Text: DOI
Garijo, Antonio; Jarque, Xavier The secant map applied to a real polynomial with multiple roots. (English) Zbl 07273496 Discrete Contin. Dyn. Syst. 40, No. 12, 6783-6794 (2020). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 37N30 37G35 37C70 65H04 PDF BibTeX XML Cite \textit{A. Garijo} and \textit{X. Jarque}, Discrete Contin. Dyn. Syst. 40, No. 12, 6783--6794 (2020; Zbl 07273496) Full Text: DOI
Damjanovic, Danijela; Tanis, James; Wang, Zhenqi Jenny On globally hypoelliptic abelian actions and their existence on homogeneous spaces. (English) Zbl 07273494 Discrete Contin. Dyn. Syst. 40, No. 12, 6747-6766 (2020). MSC: 37C85 37C15 37A17 37D40 37D20 14M17 57M60 PDF BibTeX XML Cite \textit{D. Damjanovic} et al., Discrete Contin. Dyn. Syst. 40, No. 12, 6747--6766 (2020; Zbl 07273494) Full Text: DOI
Buczolich, Zoltán; Maga, Balázs; Moore, Ryo Generic Birkhoff spectra. (English) Zbl 07273491 Discrete Contin. Dyn. Syst. 40, No. 12, 6649-6679 (2020). MSC: 37B10 37A30 28A80 37C45 PDF BibTeX XML Cite \textit{Z. Buczolich} et al., Discrete Contin. Dyn. Syst. 40, No. 12, 6649--6679 (2020; Zbl 07273491) Full Text: DOI
Aaronson, Jon; Terhesiu, Dalia Local limit theorems for suspended semiflows. (English) Zbl 07273488 Discrete Contin. Dyn. Syst. 40, No. 12, 6575-6609 (2020). MSC: 37A40 37A30 37H15 37C30 37D40 PDF BibTeX XML Cite \textit{J. Aaronson} and \textit{D. Terhesiu}, Discrete Contin. Dyn. Syst. 40, No. 12, 6575--6609 (2020; Zbl 07273488) Full Text: DOI
Dias, Kealey A characterization of multiplicity-preserving global bifurcations of complex polynomial vector fields. (English) Zbl 07273483 Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 90, 31 p. (2020). MSC: 37F46 37C29 37F75 32M25 34C23 PDF BibTeX XML Cite \textit{K. Dias}, Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 90, 31 p. (2020; Zbl 07273483) Full Text: DOI
Kong, Fanchao; Liang, Feng; Nieto, Juan J. Positive periodic solutions of coupled singular Rayleigh systems. (English) Zbl 07273481 Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 88, 26 p. (2020). MSC: 34C25 34K13 37C60 47N20 PDF BibTeX XML Cite \textit{F. Kong} et al., Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 88, 26 p. (2020; Zbl 07273481) Full Text: DOI