Azagra, Daniel; Stolyarov, Dmitriy Inner and outer smooth approximation of convex hypersurfaces. When is it possible? (English) Zbl 07668130 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 230, Article ID 113225, 20 p. (2023). MSC: 26B25 26E05 28A75 41A30 52A20 53C45 PDF BibTeX XML Cite \textit{D. Azagra} and \textit{D. Stolyarov}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 230, Article ID 113225, 20 p. (2023; Zbl 07668130) Full Text: DOI arXiv OpenURL
Anastassiou, George A.; Karateke, Seda Richards’s curve induced Banach space valued multivariate neural network approximation. (English) Zbl 07667685 Arab. J. Math. 12, No. 1, 11-33 (2023). MSC: 41A17 41A25 41A30 41A36 PDF BibTeX XML Cite \textit{G. A. Anastassiou} and \textit{S. Karateke}, Arab. J. Math. 12, No. 1, 11--33 (2023; Zbl 07667685) Full Text: DOI OpenURL
Gupta, Vijay A form of gamma operator due to Rathore. (English) Zbl 07662830 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 2, Paper No. 81, 12 p. (2023). MSC: 41A10 41A30 PDF BibTeX XML Cite \textit{V. Gupta}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 2, Paper No. 81, 12 p. (2023; Zbl 07662830) Full Text: DOI OpenURL
Suragan, Durvudkhan Sharp, double inequalities bounding the function \((1+x)^{1/x}\) and a refinement of Carleman’s inequality. (English) Zbl 07662414 Math. Inequal. Appl. 26, No. 1, 93-107 (2023). MSC: 26D20 41A17 41A30 PDF BibTeX XML Cite \textit{D. Suragan}, Math. Inequal. Appl. 26, No. 1, 93--107 (2023; Zbl 07662414) Full Text: DOI OpenURL
Voigtlaender, Felix The universal approximation theorem for complex-valued neural networks. (English) Zbl 07661144 Appl. Comput. Harmon. Anal. 64, 33-61 (2023). MSC: 68T07 41A30 41A63 31A30 PDF BibTeX XML Cite \textit{F. Voigtlaender}, Appl. Comput. Harmon. Anal. 64, 33--61 (2023; Zbl 07661144) Full Text: DOI arXiv OpenURL
Acar, Tuncer; Kursun, Sadettin; Turgay, Metin Multidimensional Kantorovich modifications of exponential sampling series. (English) Zbl 07659666 Quaest. Math. 46, No. 1, 57-72 (2023). MSC: 41A25 41A30 47A58 PDF BibTeX XML Cite \textit{T. Acar} et al., Quaest. Math. 46, No. 1, 57--72 (2023; Zbl 07659666) Full Text: DOI OpenURL
Lal, Shyam; Kumari, Priya Approximation of functions of Hőlder class and solution of ODE and PDE by extended Haar wavelet operational matrix. (English) Zbl 07658701 Rend. Circ. Mat. Palermo (2) 72, No. 1, 355-376 (2023). MSC: 42C40 41A30 65T60 65L10 65L60 65R20 PDF BibTeX XML Cite \textit{S. Lal} and \textit{P. Kumari}, Rend. Circ. Mat. Palermo (2) 72, No. 1, 355--376 (2023; Zbl 07658701) Full Text: DOI OpenURL
Alouges, François; Darses, Sébastien; Hillion, Erwan Polynomial approximations in a generalized Nyman-Beurling criterion. (English. French summary) Zbl 07654302 J. Théor. Nombres Bordx. 34, No. 3, 767-785 (2023). MSC: 41A30 46E20 60E05 11M26 PDF BibTeX XML Cite \textit{F. Alouges} et al., J. Théor. Nombres Bordx. 34, No. 3, 767--785 (2023; Zbl 07654302) Full Text: DOI arXiv OpenURL
Lerma Pineda, Andrés Felipe; Petersen, Philipp Christian Deep neural networks can stably solve high-dimensional, noisy, non-linear inverse problems. (English) Zbl 07652561 Anal. Appl., Singap. 21, No. 1, 49-91 (2023). MSC: 41A27 41A25 41A30 68T05 PDF BibTeX XML Cite \textit{A. F. Lerma Pineda} and \textit{P. C. Petersen}, Anal. Appl., Singap. 21, No. 1, 49--91 (2023; Zbl 07652561) Full Text: DOI arXiv OpenURL
Gupta, Vijay; Anjali On Kantorovich variant based on inverse Pólya-Eggenberger distribution. (English) Zbl 07649325 Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 2, 18 p. (2023). MSC: 65N06 41A25 41A30 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{Anjali}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 2, 18 p. (2023; Zbl 07649325) Full Text: DOI OpenURL
Anastassiou, George A.; Karateke, Seda Richards’s curve induced Banach space valued ordinary and fractional neural network approximation. (English) Zbl 07647280 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 14, 33 p. (2023). MSC: 26A33 41A17 41A25 41A30 46B25 PDF BibTeX XML Cite \textit{G. A. Anastassiou} and \textit{S. Karateke}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 1, Paper No. 14, 33 p. (2023; Zbl 07647280) Full Text: DOI OpenURL
Conti, Costanza; López-Ureña, Sergio Non-oscillatory butterfly-type interpolation on triangular meshes. (English) Zbl 1503.65042 J. Comput. Appl. Math. 420, Article ID 114788, 24 p. (2023). MSC: 65D18 41A25 41A30 65D05 65D17 PDF BibTeX XML Cite \textit{C. Conti} and \textit{S. López-Ureña}, J. Comput. Appl. Math. 420, Article ID 114788, 24 p. (2023; Zbl 1503.65042) Full Text: DOI OpenURL
Tian, Liutao; Jiao, Yujian Modified Legendre rational spectral method for Burgers equation on the whole line. (English) Zbl 07663591 J. Math. Study 55, No. 4, 415-431 (2022). MSC: 41A30 76M22 65M70 33C45 65M12 PDF BibTeX XML Cite \textit{L. Tian} and \textit{Y. Jiao}, J. Math. Study 55, No. 4, 415--431 (2022; Zbl 07663591) Full Text: DOI OpenURL
Khader, M. M.; Sharma, Ram Prakash Evaluating the MHD non-Newtonian fluid motion past a stretching sheet under the influence of non-uniform thickness with Dufour and Soret effects implementing Chebyshev spectral method. (English) Zbl 07644915 Appl. Appl. Math. 17, No. 2, 421-438 (2022). MSC: 65N20 41A30 PDF BibTeX XML Cite \textit{M. M. Khader} and \textit{R. P. Sharma}, Appl. Appl. Math. 17, No. 2, 421--438 (2022; Zbl 07644915) Full Text: Link OpenURL
Jha, Sangita; Verma, Saurabh; Chand, Arya K. B. Non-stationary zipper \(\alpha\)-fractal functions and associated fractal operator. (English) Zbl 1503.28010 Fract. Calc. Appl. Anal. 25, No. 4, 1527-1552 (2022). MSC: 28A80 26A18 41A05 41A30 28A75 PDF BibTeX XML Cite \textit{S. Jha} et al., Fract. Calc. Appl. Anal. 25, No. 4, 1527--1552 (2022; Zbl 1503.28010) Full Text: DOI OpenURL
Almurieb, Hawraa Abbas; Sharba, Zainab Abdulmunim; Kareem, Mayada Ali Trigonometric Jackson integrals approximation by a \(k\)-generalized modulus of smoothness. (English) Zbl 07635257 Nonlinear Funct. Anal. Appl. 27, No. 4, 807-812 (2022). MSC: 41A10 41A30 41A35 PDF BibTeX XML Cite \textit{H. A. Almurieb} et al., Nonlinear Funct. Anal. Appl. 27, No. 4, 807--812 (2022; Zbl 07635257) Full Text: Link OpenURL
Khachar, Hardeepbhai J.; Vyas, Rajendra G. Rate of convergence for rational and conjugate rational Fourier series of functions of generalized bounded variation. (English) Zbl 07634713 Acta Comment. Univ. Tartu. Math. 26, No. 2, 233-241 (2022). MSC: 41A30 41A25 42C10 42B05 PDF BibTeX XML Cite \textit{H. J. Khachar} and \textit{R. G. Vyas}, Acta Comment. Univ. Tartu. Math. 26, No. 2, 233--241 (2022; Zbl 07634713) Full Text: DOI OpenURL
Chandra, Subhash; Abbas, Syed On fractal dimensions of fractal functions using function spaces. (English) Zbl 07626923 Bull. Aust. Math. Soc. 106, No. 3, 470-480 (2022). MSC: 28A80 33C47 41A30 PDF BibTeX XML Cite \textit{S. Chandra} and \textit{S. Abbas}, Bull. Aust. Math. Soc. 106, No. 3, 470--480 (2022; Zbl 07626923) Full Text: DOI OpenURL
Hamzehnejad, M.; Hosseini, M. M.; Salemi, A. Estimation of the regression function by Legendre wavelets. (English) Zbl 1499.65787 Iran. J. Numer. Anal. Optim. 12, No. 3 (Spec. Iss.), 497-512 (2022). MSC: 65T60 41A30 65D10 62G08 PDF BibTeX XML Cite \textit{M. Hamzehnejad} et al., Iran. J. Numer. Anal. Optim. 12, No. 3 (Spec. Iss.), 497--512 (2022; Zbl 1499.65787) Full Text: DOI OpenURL
Volosivets, S. S. Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces. (English) Zbl 07623668 Probl. Anal. Issues Anal. 11(29), No. 2, 106-118 (2022). MSC: 42A10 42A24 46E30 41A30 PDF BibTeX XML Cite \textit{S. S. Volosivets}, Probl. Anal. Issues Anal. 11(29), No. 2, 106--118 (2022; Zbl 07623668) Full Text: DOI MNR OpenURL
Testici, A. Maximal convergence of Faber series in weighted rearrangement invariant Smirnov classes. (English) Zbl 07623524 Ufim. Mat. Zh. 14, No. 3, 121-130 (2022) and Ufa Math. J. 14, No. 3, 117-126 (2022). MSC: 30E10 41A10 41A30 PDF BibTeX XML Cite \textit{A. Testici}, Ufim. Mat. Zh. 14, No. 3, 121--130 (2022; Zbl 07623524) Full Text: MNR OpenURL
Zheng, Chaowen; Tang, Zhuochao; Huang, Jingfang; Wu, Yichao An \(O(N)\) algorithm for computing expectation of \(N\)-dimensional truncated multi-variate normal distribution. II: computing moments and sparse grid acceleration. (English) Zbl 07618974 Adv. Comput. Math. 48, No. 6, Paper No. 71, 20 p. (2022). MSC: 03D20 41A30 62H10 65C60 65D30 65T40 PDF BibTeX XML Cite \textit{C. Zheng} et al., Adv. Comput. Math. 48, No. 6, Paper No. 71, 20 p. (2022; Zbl 07618974) Full Text: DOI OpenURL
Kudinov, I. V.; Pimenov, A. A.; Mikheeva, G. V. Investigation of the thermal stressed state of a hydrogen recovery reactor. (English. Russian original) Zbl 1502.80006 J. Appl. Mech. Tech. Phys. 63, No. 1, 139-150 (2022); translation from Prikl. Mekh. Tekh. Fiz. 63, No. 1, 162-174 (2022). MSC: 80A19 80A25 80A32 74A15 41A30 35Q79 PDF BibTeX XML Cite \textit{I. V. Kudinov} et al., J. Appl. Mech. Tech. Phys. 63, No. 1, 139--150 (2022; Zbl 1502.80006); translation from Prikl. Mekh. Tekh. Fiz. 63, No. 1, 162--174 (2022) Full Text: DOI OpenURL
Eslami, Samira; Ilati, Mohammad; Dehghan, Mehdi A local meshless method for solving multi-dimensional Galilei invariant fractional advection-diffusion equation. (English) Zbl 07604156 Eng. Anal. Bound. Elem. 143, 283-292 (2022). MSC: 41A30 65M99 65N99 PDF BibTeX XML Cite \textit{S. Eslami} et al., Eng. Anal. Bound. Elem. 143, 283--292 (2022; Zbl 07604156) Full Text: DOI OpenURL
Testici, A.; Israfilov, D. M. Matrix transforms in weighted variable exponent Lebesgue spaces. (English) Zbl 07603489 Azerb. J. Math. 12, No. 2, 30-44 (2022). MSC: 41A10 42A10 41A30 41A17 PDF BibTeX XML Cite \textit{A. Testici} and \textit{D. M. Israfilov}, Azerb. J. Math. 12, No. 2, 30--44 (2022; Zbl 07603489) Full Text: Link OpenURL
Chernov, Andreĭ Vladimirovich On flexibility of constraints system under approximation of optimal control problems. (Russian. English summary) Zbl 07602974 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 59, 114-130 (2022). MSC: 41A30 49M25 49N90 PDF BibTeX XML Cite \textit{A. V. Chernov}, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 59, 114--130 (2022; Zbl 07602974) Full Text: DOI MNR OpenURL
Patel, Prashantkumar Gordhanbhai; Söylemez, Dilek; Gürel-Yilmaz, Övgu On Lupaş-Jain-Beta operators. (English) Zbl 07602855 Thai J. Math. 20, No. 2, 511-525 (2022). MSC: 41A25 41A30 41A36 PDF BibTeX XML Cite \textit{P. G. Patel} et al., Thai J. Math. 20, No. 2, 511--525 (2022; Zbl 07602855) Full Text: Link OpenURL
Gupta, Vijay On new exponential-type operators. (English) Zbl 07600355 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 4, Paper No. 157, 10 p. (2022). MSC: 41A25 41A30 PDF BibTeX XML Cite \textit{V. Gupta}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 4, Paper No. 157, 10 p. (2022; Zbl 07600355) Full Text: DOI OpenURL
Prudnikov, V. Ya.; Podgaev, A. G. A criterion for the approximation of a semicontinuous functional by Lipschitz functionals. (Russian. English summary) Zbl 07600183 Dal’nevost. Mat. Zh. 22, No. 1, 84-90 (2022). MSC: 41A30 54C99 46-XX 47-XX PDF BibTeX XML Cite \textit{V. Ya. Prudnikov} and \textit{A. G. Podgaev}, Dal'nevost. Mat. Zh. 22, No. 1, 84--90 (2022; Zbl 07600183) Full Text: DOI MNR OpenURL
Pandey, Kshitij Kumar; Viswanathan, Puthan Veedu Multivariate fractal interpolation functions: some approximation aspects and an associated fractal interpolation operator. (English) Zbl 1498.28017 ETNA, Electron. Trans. Numer. Anal. 55, 627-651 (2022). MSC: 28A80 41A05 41A30 PDF BibTeX XML Cite \textit{K. K. Pandey} and \textit{P. V. Viswanathan}, ETNA, Electron. Trans. Numer. Anal. 55, 627--651 (2022; Zbl 1498.28017) Full Text: DOI arXiv Link OpenURL
Gao, Zixuan; Liang, Jiuyang; Xu, Zhenli A kernel-independent sum-of-exponentials method. (English) Zbl 07593943 J. Sci. Comput. 93, No. 2, Paper No. 40, 35 p. (2022). MSC: 41A30 42A38 65R20 PDF BibTeX XML Cite \textit{Z. Gao} et al., J. Sci. Comput. 93, No. 2, Paper No. 40, 35 p. (2022; Zbl 07593943) Full Text: DOI arXiv OpenURL
Sun, Zhengjie; Gao, Wenwu; Yang, Ran A convergent iterated quasi-interpolation for periodic domain and its applications to surface PDEs. (English) Zbl 07593940 J. Sci. Comput. 93, No. 2, Paper No. 37, 20 p. (2022). MSC: 41A05 41A25 41A30 41A63 PDF BibTeX XML Cite \textit{Z. Sun} et al., J. Sci. Comput. 93, No. 2, Paper No. 37, 20 p. (2022; Zbl 07593940) Full Text: DOI OpenURL
Wang, Yihong; Tang, Min; Fu, Jingyi Uniform convergent scheme for discrete-ordinate radiative transport equation with discontinuous coefficients on unstructured quadrilateral meshes. (English) Zbl 07593155 SN Partial Differ. Equ. Appl. 3, No. 5, Paper No. 61, 20 p. (2022). MSC: 41A30 41A60 65D25 PDF BibTeX XML Cite \textit{Y. Wang} et al., SN Partial Differ. Equ. Appl. 3, No. 5, Paper No. 61, 20 p. (2022; Zbl 07593155) Full Text: DOI OpenURL
Lasserre, Jean B. On the Christoffel function and classification in data analysis. (English. French summary) Zbl 07589444 C. R., Math., Acad. Sci. Paris 360, 919-928 (2022). MSC: 41A30 42C05 47B32 68T09 94A16 PDF BibTeX XML Cite \textit{J. B. Lasserre}, C. R., Math., Acad. Sci. Paris 360, 919--928 (2022; Zbl 07589444) Full Text: DOI arXiv OpenURL
Lohaj-Misini, Afërdita; Trupaj, Bashkim; Rexhepi, Shpetim Generalized Szász-Chlodowsky type operators involving \(d\)-orthogonal Brenke polynomials for functions with one and two variables. (English) Zbl 07587157 Palest. J. Math. 11, No. 2, 114-128 (2022). MSC: 41A25 41A28 41A30 41A36 41A63 41A10 PDF BibTeX XML Cite \textit{A. Lohaj-Misini} et al., Palest. J. Math. 11, No. 2, 114--128 (2022; Zbl 07587157) Full Text: Link OpenURL
Gupta, Vijay; Aral, Ali; Özsaraç, Firat On semi-exponential Gauss-Weierstrass operators. (English) Zbl 07584626 Anal. Math. Phys. 12, No. 5, Paper No. 111, 16 p. (2022). MSC: 41A25 41A30 PDF BibTeX XML Cite \textit{V. Gupta} et al., Anal. Math. Phys. 12, No. 5, Paper No. 111, 16 p. (2022; Zbl 07584626) Full Text: DOI OpenURL
Zeglaoui, Anis; Ben Mabrouk, Anouar; Kravchenko, Oleg V. Wavelet neural networks functional approximation and application. (English) Zbl 1500.42020 Int. J. Wavelets Multiresolut. Inf. Process. 20, No. 4, Article ID 2150060, 31 p. (2022). Reviewer: Mehdi Rashidi-Kouchi (Kerman) MSC: 42C40 68T07 41A30 PDF BibTeX XML Cite \textit{A. Zeglaoui} et al., Int. J. Wavelets Multiresolut. Inf. Process. 20, No. 4, Article ID 2150060, 31 p. (2022; Zbl 1500.42020) Full Text: DOI OpenURL
Chen, Hengjie; Li, Zhong A note on the applications of one primary function in deep neural networks. (English) Zbl 07579721 Int. J. Wavelets Multiresolut. Inf. Process. 20, No. 4, Article ID 2150058, 18 p. (2022). MSC: 41A25 41A30 68T99 82C32 92B20 PDF BibTeX XML Cite \textit{H. Chen} and \textit{Z. Li}, Int. J. Wavelets Multiresolut. Inf. Process. 20, No. 4, Article ID 2150058, 18 p. (2022; Zbl 07579721) Full Text: DOI OpenURL
Mohammadi, K.; Alipanah, A.; Ghasemi, M. A non-classical sinc-collocation method for the solution of singular boundary value problems arising in physiology. (English) Zbl 07579669 Int. J. Comput. Math. 99, No. 10, 1941-1967 (2022). MSC: 65-XX 41A30 65L10 65L11 65L60 PDF BibTeX XML Cite \textit{K. Mohammadi} et al., Int. J. Comput. Math. 99, No. 10, 1941--1967 (2022; Zbl 07579669) Full Text: DOI OpenURL
Quesada-Herrera, Oscar E. On the \(q\)-analogue of the pair correlation conjecture via Fourier optimization. (English) Zbl 07574506 Math. Comput. 91, No. 337, 2347-2365 (2022). Reviewer: Stelian Mihalas (Timişoara) MSC: 11M06 11M26 41A30 PDF BibTeX XML Cite \textit{O. E. Quesada-Herrera}, Math. Comput. 91, No. 337, 2347--2365 (2022; Zbl 07574506) Full Text: DOI arXiv OpenURL
Henrion, Didier; Lasserre, Jean Bernard Graph recovery from incomplete moment information. (English) Zbl 1495.42012 Constr. Approx. 56, No. 1, 165-187 (2022). MSC: 42C05 47B32 41A30 90C22 90C23 90C05 94A12 PDF BibTeX XML Cite \textit{D. Henrion} and \textit{J. B. Lasserre}, Constr. Approx. 56, No. 1, 165--187 (2022; Zbl 1495.42012) Full Text: DOI arXiv Link OpenURL
Chen, Sheng; Zhang, Zhimin An exponential convergence approximation to singularly perturbed problems by log orthogonal functions. (English) Zbl 1492.65339 Calcolo 59, No. 3, Paper No. 30, 23 p. (2022). MSC: 65N35 41A30 34B08 65N12 65N15 PDF BibTeX XML Cite \textit{S. Chen} and \textit{Z. Zhang}, Calcolo 59, No. 3, Paper No. 30, 23 p. (2022; Zbl 1492.65339) Full Text: DOI OpenURL
Pandey, K. K.; Viswanathan, P. In reference to a self-referential approach towards smooth multivariate approximation. (English) Zbl 1496.65022 Numer. Algorithms 91, No. 1, 251-281 (2022). MSC: 65D15 28A80 26B35 41A30 PDF BibTeX XML Cite \textit{K. K. Pandey} and \textit{P. Viswanathan}, Numer. Algorithms 91, No. 1, 251--281 (2022; Zbl 1496.65022) Full Text: DOI OpenURL
Lanzara, Flavia; Maz’ya, Vladimir; Schmidt, Gunther Fast computation of the multidimensional fractional Laplacian. (English) Zbl 1492.65061 Appl. Anal. 101, No. 11, 4025-4041 (2022). MSC: 65D32 41A30 41A63 PDF BibTeX XML Cite \textit{F. Lanzara} et al., Appl. Anal. 101, No. 11, 4025--4041 (2022; Zbl 1492.65061) Full Text: DOI OpenURL
Patel, Prashantkumar; Rathour, Laxmi The rate of approximation of functions in an infinite interval by positive linear operators. (English) Zbl 07568522 Georgian Math. J. 29, No. 4, 575-581 (2022). MSC: 41A35 41A25 41A30 41A36 PDF BibTeX XML Cite \textit{P. Patel} and \textit{L. Rathour}, Georgian Math. J. 29, No. 4, 575--581 (2022; Zbl 07568522) Full Text: DOI OpenURL
Mohebalizadeh, Hamed; Fasshauer, Gregory E.; Adibi, Hojatollah Refined error estimates for Green kernel-based interpolation. (English) Zbl 07567944 Appl. Math. Lett. 133, Article ID 108258, 7 p. (2022). MSC: 65D05 65D07 41A30 41A05 41A15 PDF BibTeX XML Cite \textit{H. Mohebalizadeh} et al., Appl. Math. Lett. 133, Article ID 108258, 7 p. (2022; Zbl 07567944) Full Text: DOI OpenURL
Garg, Sangeeta Approximation for Gupta type general operators based on Miheşan basis functions. (English) Zbl 07565058 Publ. Inst. Math., Nouv. Sér. 111(125), 77-87 (2022). MSC: 41A36 41A30 PDF BibTeX XML Cite \textit{S. Garg}, Publ. Inst. Math., Nouv. Sér. 111(125), 77--87 (2022; Zbl 07565058) Full Text: DOI OpenURL
He, Juncai; Li, Lin; Xu, Jinchao Approximation properties of deep ReLU CNNs. (English) Zbl 07562336 Res. Math. Sci. 9, No. 3, Paper No. 38, 24 p. (2022). MSC: 41A30 68T07 65D40 PDF BibTeX XML Cite \textit{J. He} et al., Res. Math. Sci. 9, No. 3, Paper No. 38, 24 p. (2022; Zbl 07562336) Full Text: DOI arXiv OpenURL
Yıldız Özkan, Esma Some inequalities and numerical results estimating error of approximation for tensor product kind bivariate quantum beta-type operators and pertaining to GBS variant. (English) Zbl 07562144 J. Inequal. Appl. 2022, Paper No. 66, 20 p. (2022). MSC: 41A25 41A30 33D05 PDF BibTeX XML Cite \textit{E. Yıldız Özkan}, J. Inequal. Appl. 2022, Paper No. 66, 20 p. (2022; Zbl 07562144) Full Text: DOI OpenURL
Agrawal, P. N.; Bhardwaj, Neha; Bawa, Parveen Bézier variant of modified \(\alpha\)-Bernstein operators. (English) Zbl 07560203 Rend. Circ. Mat. Palermo (2) 71, No. 2, 807-827 (2022). MSC: 41A10 41A25 41A30 41A63 26A15 PDF BibTeX XML Cite \textit{P. N. Agrawal} et al., Rend. Circ. Mat. Palermo (2) 71, No. 2, 807--827 (2022; Zbl 07560203) Full Text: DOI OpenURL
Yang, Hyoseon; Yoon, Jungho A shape preserving \(C^2\) non-linear, non-uniform, subdivision scheme with fourth-order accuracy. (English) Zbl 07557815 Appl. Comput. Harmon. Anal. 60, 267-292 (2022). MSC: 41A05 41A30 65D05 65D10 65D17 PDF BibTeX XML Cite \textit{H. Yang} and \textit{J. Yoon}, Appl. Comput. Harmon. Anal. 60, 267--292 (2022; Zbl 07557815) Full Text: DOI OpenURL
Prakash, Chandra; Deo, Naokant; Verma, D. K. Bézier variant of Bernstein-Durrmeyer blending-type operators. (English) Zbl 07545956 Asian-Eur. J. Math. 15, No. 6, Article ID 2250103, 17 p. (2022). MSC: 41A36 26A15 41A25 41A30 PDF BibTeX XML Cite \textit{C. Prakash} et al., Asian-Eur. J. Math. 15, No. 6, Article ID 2250103, 17 p. (2022; Zbl 07545956) Full Text: DOI OpenURL
Wang, Shuyi; Zhou, Zixu; Chang, Lo-Bin; Xiu, Dongbin Construction of discontinuity detectors using convolutional neural networks. (English) Zbl 07544562 J. Sci. Comput. 91, No. 2, Paper No. 40, 20 p. (2022). MSC: 68T07 41A30 65D99 PDF BibTeX XML Cite \textit{S. Wang} et al., J. Sci. Comput. 91, No. 2, Paper No. 40, 20 p. (2022; Zbl 07544562) Full Text: DOI OpenURL
Cheridito, Patrick; Jentzen, Arnulf; Riekert, Adrian; Rossmannek, Florian A proof of convergence for gradient descent in the training of artificial neural networks for constant target functions. (English) Zbl 1502.65037 J. Complexity 72, Article ID 101646, 26 p. (2022). MSC: 65K10 41A30 68T07 PDF BibTeX XML Cite \textit{P. Cheridito} et al., J. Complexity 72, Article ID 101646, 26 p. (2022; Zbl 1502.65037) Full Text: DOI arXiv OpenURL
Tunç, Tuncay; Fedakar, Burcu On approximation properties of a Stancu generalization of Szasz-Mirakyan-Bernstein operators. (English) Zbl 07542538 J. Math. Sci., New York 260, No. 5, 700-710 (2022); and Ukr. Mat. Visn. 18, No. 4, 569-582 (2021). Reviewer: Vijay Gupta (New Delhi) MSC: 41A25 41A30 PDF BibTeX XML Cite \textit{T. Tunç} and \textit{B. Fedakar}, J. Math. Sci., New York 260, No. 5, 700--710 (2022; Zbl 07542538) Full Text: DOI OpenURL
Chernov, A. V. On uniform monotone approximation of continuous monotone functions with the help of translations and dilations of the Laplace integral. (English. Russian original) Zbl 07538079 Comput. Math. Math. Phys. 62, No. 4, 564-580 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 4, 580-596 (2022). MSC: 41A30 65D15 PDF BibTeX XML Cite \textit{A. V. Chernov}, Comput. Math. Math. Phys. 62, No. 4, 564--580 (2022; Zbl 07538079); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 4, 580--596 (2022) Full Text: DOI OpenURL
Navascués, M. A.; Viswanathan, P. A revisit to stability of Schauder bases: fractalizing multivariate Faber-Schauder system. (English) Zbl 1500.46012 Fractals 30, No. 3, Article ID 2272001, 12 p. (2022). MSC: 46B15 41A30 28A80 PDF BibTeX XML Cite \textit{M. A. Navascués} and \textit{P. Viswanathan}, Fractals 30, No. 3, Article ID 2272001, 12 p. (2022; Zbl 1500.46012) Full Text: DOI OpenURL
Özalp Güller, Özge; Acar, Ecem; Kırcı Serenbay, Sevilay Some new theorems on the approximation of maximum product type of multivariate nonlinear Bernstein-Chlodowsky operators. (English) Zbl 07535188 Adv. Oper. Theory 7, No. 3, Paper No. 27, 15 p. (2022). MSC: 41A36 41A17 41A25 41A30 41A63 47A58 PDF BibTeX XML Cite \textit{Ö. Özalp Güller} et al., Adv. Oper. Theory 7, No. 3, Paper No. 27, 15 p. (2022; Zbl 07535188) Full Text: DOI OpenURL
Ismailov, Vugar E. A formula for the approximation of functions by single hidden layer neural networks with weights from two straight lines. (English) Zbl 07534758 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 48, No. 1, 140-149 (2022). MSC: 41A30 41A63 68T05 92B20 PDF BibTeX XML Cite \textit{V. E. Ismailov}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 48, No. 1, 140--149 (2022; Zbl 07534758) Full Text: DOI OpenURL
Vijay; Vijender, N.; Chand, A. K. B. Generalized zipper fractal approximation and parameter identification problems. (English) Zbl 07530577 Comput. Appl. Math. 41, No. 4, Paper No. 155, 23 p. (2022). MSC: 65D05 28A80 41A05 41A29 41A30 65D10 26A48 26A51 PDF BibTeX XML Cite \textit{Vijay} et al., Comput. Appl. Math. 41, No. 4, Paper No. 155, 23 p. (2022; Zbl 07530577) Full Text: DOI OpenURL
Kondo, Kei Approximations of Lipschitz maps via Ehresmann fibrations and Reeb’s sphere theorem for Lipschitz functions. (English) Zbl 1489.58003 J. Math. Soc. Japan 74, No. 2, 521-548 (2022). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 58C25 57R12 41A63 41A30 53C20 PDF BibTeX XML Cite \textit{K. Kondo}, J. Math. Soc. Japan 74, No. 2, 521--548 (2022; Zbl 1489.58003) Full Text: DOI arXiv OpenURL
Font, Juan J.; Macario, Sergio Constructive approximation of continuous interval-valued functions. (English) Zbl 07517479 Numer. Funct. Anal. Optim. 43, No. 2, 127-144 (2022). MSC: 65-XX 41A30 65G40 PDF BibTeX XML Cite \textit{J. J. Font} and \textit{S. Macario}, Numer. Funct. Anal. Optim. 43, No. 2, 127--144 (2022; Zbl 07517479) Full Text: DOI OpenURL
Kolomoitsev, Yu.; Skopina, M. Uniform approximation by multivariate quasi-projection operators. (English) Zbl 07506380 Anal. Math. Phys. 12, No. 2, Paper No. 68, 23 p. (2022). MSC: 41A30 41A17 42B10 94A20 PDF BibTeX XML Cite \textit{Yu. Kolomoitsev} and \textit{M. Skopina}, Anal. Math. Phys. 12, No. 2, Paper No. 68, 23 p. (2022; Zbl 07506380) Full Text: DOI arXiv OpenURL
Karahan, Döne; Izgi, Aydın; Serenbay, Sevilay Kırcı Approximation by max-product Balázs-Szabados operators. (English) Zbl 1492.41007 J. Ramanujan Math. Soc. 37, No. 1, 23-30 (2022). Reviewer: Sergei S. Platonov (Petrozavodsk) MSC: 41A30 41A25 41A29 PDF BibTeX XML Cite \textit{D. Karahan} et al., J. Ramanujan Math. Soc. 37, No. 1, 23--30 (2022; Zbl 1492.41007) Full Text: Link OpenURL
Ozsarac, Firat; Gupta, Vijay; Aral, Ali Approximation by some Baskakov-Kantorovich exponential-type operators. (English) Zbl 1502.41006 Bull. Iran. Math. Soc. 48, No. 1, 227-241 (2022). Reviewer: Mariarosaria Natale (Firenze) MSC: 41A35 41A25 41A30 PDF BibTeX XML Cite \textit{F. Ozsarac} et al., Bull. Iran. Math. Soc. 48, No. 1, 227--241 (2022; Zbl 1502.41006) Full Text: DOI OpenURL
Azagra, Daniel Locally \(C^{1,1}\) convex extensions of \(1\)-jets. (English) Zbl 1493.26040 Rev. Mat. Iberoam. 38, No. 1, 131-174 (2022). MSC: 26B25 28A75 41A30 52A20 52A27 53C45 PDF BibTeX XML Cite \textit{D. Azagra}, Rev. Mat. Iberoam. 38, No. 1, 131--174 (2022; Zbl 1493.26040) Full Text: DOI arXiv OpenURL
Siegel, Jonathan W.; Xu, Jinchao High-order approximation rates for shallow neural networks with cosine and \(\mathrm{ReLU}^k\) activation functions. (English) Zbl 1501.41006 Appl. Comput. Harmon. Anal. 58, 1-26 (2022). MSC: 41A30 42C40 46E35 65D05 PDF BibTeX XML Cite \textit{J. W. Siegel} and \textit{J. Xu}, Appl. Comput. Harmon. Anal. 58, 1--26 (2022; Zbl 1501.41006) Full Text: DOI arXiv OpenURL
Lim, Lek-Heng; Michałek, Mateusz; Qi, Yang Best \(k\)-layer neural network approximations. (English) Zbl 1501.41005 Constr. Approx. 55, No. 1, 583-604 (2022). MSC: 41A30 41A50 68T05 92B20 PDF BibTeX XML Cite \textit{L.-H. Lim} et al., Constr. Approx. 55, No. 1, 583--604 (2022; Zbl 1501.41005) Full Text: DOI arXiv OpenURL
Yarotsky, Dmitry Universal approximations of invariant maps by neural networks. (English) Zbl 07493723 Constr. Approx. 55, No. 1, 407-474 (2022). Reviewer: Martin D. Buhmann (Gießen) MSC: 41A63 13A50 20C35 41A30 62J02 62M45 68T05 PDF BibTeX XML Cite \textit{D. Yarotsky}, Constr. Approx. 55, No. 1, 407--474 (2022; Zbl 07493723) Full Text: DOI arXiv OpenURL
Safran, Itay; Eldan, Ronen; Shamir, Ohad Depth separations in neural networks: what is actually being separated? (English) Zbl 07493720 Constr. Approx. 55, No. 1, 225-257 (2022). Reviewer: Alexei Lukashov (Moskva) MSC: 41A30 41A10 65D15 68T07 PDF BibTeX XML Cite \textit{I. Safran} et al., Constr. Approx. 55, No. 1, 225--257 (2022; Zbl 07493720) Full Text: DOI arXiv OpenURL
Vlačić, Verner; Bölcskei, Helmut Neural network identifiability for a family of sigmoidal nonlinearities. (English) Zbl 1482.68217 Constr. Approx. 55, No. 1, 173-224 (2022). MSC: 68T07 41A30 PDF BibTeX XML Cite \textit{V. Vlačić} and \textit{H. Bölcskei}, Constr. Approx. 55, No. 1, 173--224 (2022; Zbl 1482.68217) Full Text: DOI arXiv OpenURL
Daubechies, I.; DeVore, R.; Foucart, S.; Hanin, B.; Petrova, G. Nonlinear approximation and (deep) ReLU networks. (English) Zbl 1501.41003 Constr. Approx. 55, No. 1, 127-172 (2022). Reviewer: Peter Massopust (München) MSC: 41A25 41A30 41A46 68T07 82C32 92B20 PDF BibTeX XML Cite \textit{I. Daubechies} et al., Constr. Approx. 55, No. 1, 127--172 (2022; Zbl 1501.41003) Full Text: DOI arXiv OpenURL
E, Weinan; Wojtowytsch, Stephan Representation formulas and pointwise properties for Barron functions. (English) Zbl 1482.41013 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 46, 37 p. (2022). MSC: 41A30 26B35 26B40 46E15 68T07 PDF BibTeX XML Cite \textit{W. E} and \textit{S. Wojtowytsch}, Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 46, 37 p. (2022; Zbl 1482.41013) Full Text: DOI arXiv OpenURL
Hesse, Kerstin; Le Gia, Quoc Thong \(L_2\) error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data. (English) Zbl 1484.65030 J. Comput. Appl. Math. 408, Article ID 114118, 26 p. (2022). MSC: 65D10 33C55 41A30 41A55 42C10 65D32 PDF BibTeX XML Cite \textit{K. Hesse} and \textit{Q. T. Le Gia}, J. Comput. Appl. Math. 408, Article ID 114118, 26 p. (2022; Zbl 1484.65030) Full Text: DOI OpenURL
Eigel, Martin; Schneider, Reinhold; Trunschke, Philipp Convergence bounds for empirical nonlinear least-squares. (English) Zbl 1482.62071 ESAIM, Math. Model. Numer. Anal. 56, No. 1, 79-104 (2022). MSC: 62J02 41A25 41A65 41A30 PDF BibTeX XML Cite \textit{M. Eigel} et al., ESAIM, Math. Model. Numer. Anal. 56, No. 1, 79--104 (2022; Zbl 1482.62071) Full Text: DOI arXiv OpenURL
Chirre, Andrés; Gonçalves, Felipe Bounding the log-derivative of the zeta-function. (English) Zbl 1485.11125 Math. Z. 300, No. 1, 1041-1053 (2022). Reviewer: Stelian Mihalas (Timişoara) MSC: 11M06 11M26 41A30 PDF BibTeX XML Cite \textit{A. Chirre} and \textit{F. Gonçalves}, Math. Z. 300, No. 1, 1041--1053 (2022; Zbl 1485.11125) Full Text: DOI arXiv OpenURL
Alonso-Gutiérrez, David; González Merino, Bernardo; Villa, Rafael Best approximation of functions by log-polynomials. (English) Zbl 1498.41015 J. Funct. Anal. 282, No. 5, Article ID 109344, 33 p. (2022). Reviewer: Alexei Lukashov (Moskva) MSC: 41A30 26C99 52A40 PDF BibTeX XML Cite \textit{D. Alonso-Gutiérrez} et al., J. Funct. Anal. 282, No. 5, Article ID 109344, 33 p. (2022; Zbl 1498.41015) Full Text: DOI arXiv OpenURL
Gupta, Vijay; Anjali Higher order Kantorovich operators based on inverse Pólya-Eggenberger distribution. (English) Zbl 1477.65172 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 1, Paper No. 31, 15 p. (2022). MSC: 65N06 62E17 41A30 41A36 41A25 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{Anjali}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 1, Paper No. 31, 15 p. (2022; Zbl 1477.65172) Full Text: DOI OpenURL
Kumar, Devendra Measures of growth and approximation of entire harmonic functions in \(n\)-dimensional space in some Banach spaces. (English) Zbl 07633269 J. Math. Appl. 44, 57-70 (2021). MSC: 31B05 41A30 PDF BibTeX XML Cite \textit{D. Kumar}, J. Math. Appl. 44, 57--70 (2021; Zbl 07633269) Full Text: DOI OpenURL
Jha, S.; Chand, A. K. B.; Navascues, M. A. Generalized bivariate Hermite fractal interpolation function. (Russian. English summary) Zbl 07617327 Sib. Zh. Vychisl. Mat. 24, No. 2, 117-129 (2021). MSC: 28A80 41A30 65D05 65D07 65D10 PDF BibTeX XML Cite \textit{S. Jha} et al., Sib. Zh. Vychisl. Mat. 24, No. 2, 117--129 (2021; Zbl 07617327) Full Text: DOI MNR OpenURL
Örkcü, Mediha; Dalmanoğlu, Özge; Hatipoğlu, Fatma Büşra Approximation by truncated Lupaş operators of max-product kind. (English) Zbl 1489.41015 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 70, No. 2, 924-939 (2021). MSC: 41A36 41A25 41A29 41A30 PDF BibTeX XML Cite \textit{M. Örkcü} et al., Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 70, No. 2, 924--939 (2021; Zbl 1489.41015) Full Text: DOI OpenURL
Bagul, Yogesh J.; Khairnar, Bhavna K. A note on smooth transcendental approximation to \(|x|\). (English) Zbl 1491.26013 Palest. J. Math. 10, No. 2, 644-646 (2021). MSC: 26D07 41A30 PDF BibTeX XML Cite \textit{Y. J. Bagul} and \textit{B. K. Khairnar}, Palest. J. Math. 10, No. 2, 644--646 (2021; Zbl 1491.26013) Full Text: Link OpenURL
Gorbachev, Dmitriĭ Viktorovich; Dobrovol’skiĭ, Nikolaĭ Nikolaevich Approximation by spherical polynomials in \(L^p\) for \(p<1\). (Russian. English summary) Zbl 1498.41017 Chebyshevskiĭ Sb. 22, No. 3(79), 453-456 (2021). MSC: 41A30 41A17 PDF BibTeX XML Cite \textit{D. V. Gorbachev} and \textit{N. N. Dobrovol'skiĭ}, Chebyshevskiĭ Sb. 22, No. 3(79), 453--456 (2021; Zbl 1498.41017) Full Text: MNR OpenURL
Paramonov, Petr V. Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of \(\mathbb{R}^2\). (English. Russian original) Zbl 1500.35010 Sb. Math. 212, No. 12, 1730-1745 (2021); translation from Mat. Sb. 212, No. 12, 1730-1745 (2021). MSC: 35A35 41A30 35J15 30E10 PDF BibTeX XML Cite \textit{P. V. Paramonov}, Sb. Math. 212, No. 12, 1730--1745 (2021; Zbl 1500.35010); translation from Mat. Sb. 212, No. 12, 1730--1745 (2021) Full Text: DOI OpenURL
Ismailov, Vugar E. Ridge functions and applications in neural networks. (English) Zbl 1489.26001 Mathematical Surveys and Monographs 263. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6765-4/pbk; 978-1-4704-6800-2/ebook). ix, 186 p. (2021). Reviewer: Bilal Bilalov (Baku) MSC: 26-02 26B40 39B22 41A30 41A50 41A63 92-01 92B20 PDF BibTeX XML Cite \textit{V. E. Ismailov}, Ridge functions and applications in neural networks. Providence, RI: American Mathematical Society (AMS) (2021; Zbl 1489.26001) Full Text: DOI OpenURL
Lspir, Nurhayat; Deo, Naokant; Bhardwaj, Neha Approximation of Jain operators by statistical convergence. (English) Zbl 07489151 Thai J. Math. 19, No. 4, 1187-1197 (2021). Reviewer: José María Almira (Murcia) MSC: 41A36 26A15 41A25 41A30 41A63 PDF BibTeX XML Cite \textit{N. Lspir} et al., Thai J. Math. 19, No. 4, 1187--1197 (2021; Zbl 07489151) Full Text: Link OpenURL
Babayev, Arzu M-B.; Maharov, Ibrahim K. On the error of approximation by RBF neural networks with two hidden nodes. (English) Zbl 1498.41016 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 47, No. 2, 226-231 (2021). MSC: 41A30 65D12 68T07 92B20 PDF BibTeX XML Cite \textit{A. M B. Babayev} and \textit{I. K. Maharov}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 47, No. 2, 226--231 (2021; Zbl 1498.41016) Full Text: DOI OpenURL
Vinogradov, O. L. On the constants in inverse theorems for the first-order derivative. (English. Russian original) Zbl 1484.42004 Vestn. St. Petersbg. Univ., Math. 54, No. 4, 334-344 (2021); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 8(66), No. 4, 559-571 (2021). MSC: 42A10 41A10 41A30 PDF BibTeX XML Cite \textit{O. L. Vinogradov}, Vestn. St. Petersbg. Univ., Math. 54, No. 4, 334--344 (2021; Zbl 1484.42004); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 8(66), No. 4, 559--571 (2021) Full Text: DOI OpenURL
Yanchenko, S. Ya.; Radchenko, O. Ya. Approximation characteristics of the isotropic Nikol’skii-Besov functional classes. (English) Zbl 1500.41006 Carpathian Math. Publ. 13, No. 3, 851-861 (2021). MSC: 41A30 41A46 42A38 PDF BibTeX XML Cite \textit{S. Ya. Yanchenko} and \textit{O. Ya. Radchenko}, Carpathian Math. Publ. 13, No. 3, 851--861 (2021; Zbl 1500.41006) Full Text: DOI OpenURL
Fedunyk-Yaremchuk, O. V.; Hembars’ka, S. B. Approximation of classes of periodic functions of several variables with given majorant of mixed moduli of continuity. (English) Zbl 1496.42032 Carpathian Math. Publ. 13, No. 3, 838-850 (2021). MSC: 42B35 42B15 41A46 41A30 PDF BibTeX XML Cite \textit{O. V. Fedunyk-Yaremchuk} and \textit{S. B. Hembars'ka}, Carpathian Math. Publ. 13, No. 3, 838--850 (2021; Zbl 1496.42032) Full Text: DOI OpenURL
Soybaş, Danyal; Malik, Neha Convergence estimates for Gupta-Srivastava operators. (English) Zbl 1499.41081 Kragujevac J. Math. 45, No. 5, 739-749 (2021). MSC: 41A36 41A25 41A30 PDF BibTeX XML Cite \textit{D. Soybaş} and \textit{N. Malik}, Kragujevac J. Math. 45, No. 5, 739--749 (2021; Zbl 1499.41081) Full Text: DOI Link OpenURL
Campbell, Daniel; Soudský, Filip Smooth homeomorphic approximation of piecewise affine homeomorphisms. (English) Zbl 1495.41011 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 32, No. 3, 511-534 (2021). MSC: 41A29 41A30 57Q55 PDF BibTeX XML Cite \textit{D. Campbell} and \textit{F. Soudský}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 32, No. 3, 511--534 (2021; Zbl 1495.41011) Full Text: DOI arXiv OpenURL
Kumar, Mohit; Upadhye, Neelesh S.; Chand, A. K. B. Distribution of linear fractal interpolation function for random dataset with stable noise. (English) Zbl 1493.60039 Fractals 29, No. 4, Article ID 2150086, 12 p. (2021). MSC: 60E07 28A80 41A05 41A30 PDF BibTeX XML Cite \textit{M. Kumar} et al., Fractals 29, No. 4, Article ID 2150086, 12 p. (2021; Zbl 1493.60039) Full Text: DOI OpenURL
Darses, Sébastien; Hillion, Erwan On probabilistic generalizations of the Nyman-Beurling criterion for the zeta Function. (English) Zbl 07464092 Confluentes Math. 13, No. 1, 43-59 (2021). Reviewer: Michel Balazard (Marseille) MSC: 11M26 41A30 46E20 60E05 PDF BibTeX XML Cite \textit{S. Darses} and \textit{E. Hillion}, Confluentes Math. 13, No. 1, 43--59 (2021; Zbl 07464092) Full Text: DOI arXiv OpenURL
Laurinčikas, Antanas Joint discrete universality for periodic zeta-functions. III. (English) Zbl 1483.11197 Quaest. Math. 44, No. 12, 1729-1743 (2021). MSC: 11M41 41A30 PDF BibTeX XML Cite \textit{A. Laurinčikas}, Quaest. Math. 44, No. 12, 1729--1743 (2021; Zbl 1483.11197) Full Text: DOI OpenURL
Marx, Swann; Pauwels, Edouard; Weisser, Tillmann; Henrion, Didier; Lasserre, Jean Bernard Semi-algebraic approximation using Christoffel-Darboux kernel. (English) Zbl 1497.41016 Constr. Approx. 54, No. 3, 391-429 (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 41A30 42C05 47B32 90C25 PDF BibTeX XML Cite \textit{S. Marx} et al., Constr. Approx. 54, No. 3, 391--429 (2021; Zbl 1497.41016) Full Text: DOI arXiv OpenURL
Volosivets, S. S. A distributional proof of \(p\)-adic Wiener Tauberian theorem and approximation by translates of a function. (English) Zbl 1480.42009 \(p\)-Adic Numbers Ultrametric Anal. Appl. 13, No. 4, 308-315 (2021). MSC: 42A38 40E05 41A30 42B20 PDF BibTeX XML Cite \textit{S. S. Volosivets}, \(p\)-Adic Numbers Ultrametric Anal. Appl. 13, No. 4, 308--315 (2021; Zbl 1480.42009) Full Text: DOI OpenURL
Ali, Mazen; Nouy, Anthony Approximation of smoothness classes by deep rectifier networks. (English) Zbl 1494.41008 SIAM J. Numer. Anal. 59, No. 6, 3032-3051 (2021). MSC: 41A30 41A15 65D07 68T07 PDF BibTeX XML Cite \textit{M. Ali} and \textit{A. Nouy}, SIAM J. Numer. Anal. 59, No. 6, 3032--3051 (2021; Zbl 1494.41008) Full Text: DOI arXiv OpenURL
Jung, Soon-Mo; Kim, Byungbae Approximate solutions of Schrödinger equation with a quartic potential. (English) Zbl 1476.34118 Nonlinear Funct. Anal. Appl. 26, No. 1, 157-164 (2021). MSC: 34D10 34A40 34A45 39B82 41A30 PDF BibTeX XML Cite \textit{S.-M. Jung} and \textit{B. Kim}, Nonlinear Funct. Anal. Appl. 26, No. 1, 157--164 (2021; Zbl 1476.34118) Full Text: Link OpenURL
Tao, Yujie; You, Qiaoli; Li, Xiaoping Approximation factors and subdivision’s number of piecewise linear functions in low dimensional space. (Chinese. English summary) Zbl 1488.41029 J. Northeast Norm. Univ., Nat. Sci. Ed. 53, No. 2, 19-24 (2021). MSC: 41A30 PDF BibTeX XML Cite \textit{Y. Tao} et al., J. Northeast Norm. Univ., Nat. Sci. Ed. 53, No. 2, 19--24 (2021; Zbl 1488.41029) Full Text: DOI OpenURL