Chu, Yu-Ming; Ullah, Saif; Ali, Muzaher; Tuzzahrah, Ghulam Fatima; Munir, Taj Numerical investigation of Volterra integral equations of second kind using optimal homotopy asymptotic method. (English) Zbl 07545344 Appl. Math. Comput. 430, Article ID 127304, 14 p. (2022). MSC: 65Rxx 45Dxx 45Bxx PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., Appl. Math. Comput. 430, Article ID 127304, 14 p. (2022; Zbl 07545344) Full Text: DOI OpenURL
Shahsavaran, Ahmad; Fotros, Forough An effective and simple scheme for solving nonlinear Fredholm integral equations. (English) Zbl 07545151 Math. Model. Anal. 27, No. 2, 215-231 (2022). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{A. Shahsavaran} and \textit{F. Fotros}, Math. Model. Anal. 27, No. 2, 215--231 (2022; Zbl 07545151) Full Text: DOI OpenURL
Guan, Yu; Fang, Tingting; Zhang, Diankun; Jin, Congming Solving Fredholm integral equations using deep learning. (English) Zbl 07541697 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 87, 10 p. (2022). MSC: 65R20 68T07 45B05 PDF BibTeX XML Cite \textit{Y. Guan} et al., Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 87, 10 p. (2022; Zbl 07541697) Full Text: DOI OpenURL
Wang, Tingyu; Layton, Simon K.; Barba, Lorena A. Inexact GMRES iterations and relaxation strategies with fast-multipole boundary element method. (English) Zbl 07539434 Adv. Comput. Math. 48, No. 3, Paper No. 32, 25 p. (2022). MSC: 35Q35 35Q60 76D07 76Z05 78A30 35J05 45B05 65N38 65N35 65F10 65D32 78M16 92C35 PDF BibTeX XML Cite \textit{T. Wang} et al., Adv. Comput. Math. 48, No. 3, Paper No. 32, 25 p. (2022; Zbl 07539434) Full Text: DOI OpenURL
Malham, Simon J. A. Integrability of local and non-local non-commutative fourth-order quintic non-linear Schrödinger equations. (English) Zbl 07531633 IMA J. Appl. Math. 87, No. 2, 231-259 (2022). MSC: 35Q55 35Q41 35A22 37K10 45B05 65R20 PDF BibTeX XML Cite \textit{S. J. A. Malham}, IMA J. Appl. Math. 87, No. 2, 231--259 (2022; Zbl 07531633) Full Text: DOI OpenURL
Kaya, Ruşen; Taşeli, Hasan A Rayleigh-Ritz method for numerical solutions of linear Fredholm integral equations of the second kind. (English) Zbl 07531496 J. Math. Chem. 60, No. 6, 1107-1129 (2022). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{R. Kaya} and \textit{H. Taşeli}, J. Math. Chem. 60, No. 6, 1107--1129 (2022; Zbl 07531496) Full Text: DOI OpenURL
Assanova, A. T.; Nurmukanbet, S. N. A solvability of a problem for a Fredholm integro-differential equation with weakly singular kernel. (English) Zbl 07530750 Lobachevskii J. Math. 43, No. 1, 182-191 (2022). MSC: 45B05 45E05 45J05 PDF BibTeX XML Cite \textit{A. T. Assanova} and \textit{S. N. Nurmukanbet}, Lobachevskii J. Math. 43, No. 1, 182--191 (2022; Zbl 07530750) Full Text: DOI OpenURL
Maioli, Alan C.; Schmidt, Alexandre G. M.; Azado, P. C. Quantum scattering by a Viviani’s curve. (English) Zbl 07530309 Z. Angew. Math. Phys. 73, No. 3, Paper No. 115, 12 p. (2022). MSC: 35Q40 45B05 31A10 78A45 PDF BibTeX XML Cite \textit{A. C. Maioli} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 115, 12 p. (2022; Zbl 07530309) Full Text: DOI OpenURL
Malham, Simon J. A. The non-commutative Korteweg-de Vries hierarchy and combinatorial Pöppe algebra. (English) Zbl 07529693 Physica D 434, Article ID 133228, 25 p. (2022). MSC: 35Q53 35A02 37K10 45B05 PDF BibTeX XML Cite \textit{S. J. A. Malham}, Physica D 434, Article ID 133228, 25 p. (2022; Zbl 07529693) Full Text: DOI OpenURL
Qiu, Renjun; Yan, Liang; Duan, Xiaojun Solving Fredholm integral equation of the first kind using Gaussian process regression. (English) Zbl 07529353 Appl. Math. Comput. 425, Article ID 127032, 9 p. (2022). MSC: 65Rxx 45Bxx 65Txx PDF BibTeX XML Cite \textit{R. Qiu} et al., Appl. Math. Comput. 425, Article ID 127032, 9 p. (2022; Zbl 07529353) Full Text: DOI OpenURL
Issa, K.; Biazar, J.; Agboola, T. O.; Aliu, T. Perturbed Galerkin method for solving integro-differential equations. (English) Zbl 07525378 J. Appl. Math. 2022, Article ID 9748558, 8 p. (2022). MSC: 65Rxx 45Jxx 45Bxx PDF BibTeX XML Cite \textit{K. Issa} et al., J. Appl. Math. 2022, Article ID 9748558, 8 p. (2022; Zbl 07525378) Full Text: DOI OpenURL
Le Blanc, Richard Entropic convex duality in the determination of data-constrained kernel-based Bayes-Jaynes priors. (English) Zbl 07523740 J. Convex Anal. 29, No. 2, 623-647 (2022). MSC: 62C10 60E05 45B05 PDF BibTeX XML Cite \textit{R. Le Blanc}, J. Convex Anal. 29, No. 2, 623--647 (2022; Zbl 07523740) Full Text: Link OpenURL
Dubey, Shivani; Mishra, Mukund Madhav; Pandey, Ashutosh A Neumann type problem on an unbounded domain in the Heisenberg group. (English) Zbl 07523116 J. Korean Math. Soc. 59, No. 3, 635-648 (2022). MSC: 31B20 35H20 35N15 45B05 65N80 PDF BibTeX XML Cite \textit{S. Dubey} et al., J. Korean Math. Soc. 59, No. 3, 635--648 (2022; Zbl 07523116) Full Text: DOI OpenURL
Abdel-Aty, M. A.; Abdou, M. A.; Soliman, A. A. Solvability of quadratic integral equations with singular kernel. (English) Zbl 07515008 J. Contemp. Math. Anal., Armen. Acad. Sci. 57, No. 1, 12-25 (2022) and Izv. Nats. Akad. Nauk Armen., Mat. 57, No. 1, 3-18 (2022). MSC: 45E05 45B05 65R20 PDF BibTeX XML Cite \textit{M. A. Abdel-Aty} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 57, No. 1, 12--25 (2022; Zbl 07515008) Full Text: DOI OpenURL
Nahid, Nilofar; Nelakanti, Gnaneshwar Convergence analysis of Galerkin and multi-Galerkin methods for nonlinear-Hammerstein integral equations on the half-line using Laguerre polynomials. (English) Zbl 07513112 Int. J. Comput. Math. 99, No. 4, 808-836 (2022). MSC: 65R20 45B05 45G10 PDF BibTeX XML Cite \textit{N. Nahid} and \textit{G. Nelakanti}, Int. J. Comput. Math. 99, No. 4, 808--836 (2022; Zbl 07513112) Full Text: DOI OpenURL
Mosa, Gamal A.; Abdou, Mohamed A.; Rahby, Ahmed S. Correction to: “Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag”. (English) Zbl 1485.65134 AIMS Math. 7, No. 1, 258-259 (2022). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{G. A. Mosa} et al., AIMS Math. 7, No. 1, 258--259 (2022; Zbl 1485.65134) Full Text: DOI OpenURL
Maierhofer, Georg; Huybrechs, Daan Convergence analysis of oversampled collocation boundary element methods in 2D. (English) Zbl 07506436 Adv. Comput. Math. 48, No. 2, Paper No. 11, 39 p. (2022). MSC: 65N35 65N38 65N12 45B05 65K10 35J05 PDF BibTeX XML Cite \textit{G. Maierhofer} and \textit{D. Huybrechs}, Adv. Comput. Math. 48, No. 2, Paper No. 11, 39 p. (2022; Zbl 07506436) Full Text: DOI OpenURL
Zhukovskiy, E. S.; Merchela, W. A method for studying integral equations by using a covering set of the Nemytskii operator in spaces of measurable functions. (English. Russian original) Zbl 07495303 Differ. Equ. 58, No. 1, 92-103 (2022); translation from Differ. Uravn. 58, No. 1, 93-104 (2022). Reviewer: Leonid Berezanski (Beer-Sheva) MSC: 45G10 45B05 45D05 47N20 PDF BibTeX XML Cite \textit{E. S. Zhukovskiy} and \textit{W. Merchela}, Differ. Equ. 58, No. 1, 92--103 (2022; Zbl 07495303); translation from Differ. Uravn. 58, No. 1, 93--104 (2022) Full Text: DOI OpenURL
Rostami, Yaser; Maleknejad, Khosrow The solution of the nonlinear mixed partial integro-differential equation via two-dimensional hybrid functions. (English) Zbl 07493763 Mediterr. J. Math. 19, No. 2, Paper No. 89, 20 p. (2022). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{Y. Rostami} and \textit{K. Maleknejad}, Mediterr. J. Math. 19, No. 2, Paper No. 89, 20 p. (2022; Zbl 07493763) Full Text: DOI OpenURL
Chandler-Wilde, S. N.; Spence, E. A. Coercivity, essential norms, and the Galerkin method for second-kind integral equations on polyhedral and Lipschitz domains. (English) Zbl 07493696 Numer. Math. 150, No. 2, 299-371 (2022). MSC: 31A10 31B10 45B05 45L05 65R20 PDF BibTeX XML Cite \textit{S. N. Chandler-Wilde} and \textit{E. A. Spence}, Numer. Math. 150, No. 2, 299--371 (2022; Zbl 07493696) Full Text: DOI arXiv OpenURL
Ferguson, Timothy Undecidable arithmetic properties of solutions of Fredholm integral equations. (English) Zbl 07493023 J. Number Theory 236, 230-244 (2022). Reviewer: Alexandra Shlapentokh (Greenville) MSC: 11U05 11J99 68Q17 45B05 PDF BibTeX XML Cite \textit{T. Ferguson}, J. Number Theory 236, 230--244 (2022; Zbl 07493023) Full Text: DOI OpenURL
Amin, Rohul; Alrabaiah, Hussam; Mahariq, Ibrahim; Zeb, Anwar Theoretical and computational results for mixed type Volterra-Fredholm fractional integral equations. (English) Zbl 1483.65209 Fractals 30, No. 1, Article ID 2240035, 9 p. (2022). MSC: 65R20 45G05 45E10 45B05 45D05 34A08 PDF BibTeX XML Cite \textit{R. Amin} et al., Fractals 30, No. 1, Article ID 2240035, 9 p. (2022; Zbl 1483.65209) Full Text: DOI OpenURL
Belhireche, Hanane; Guebbai, Hamza On the mixed nonlinear integro-differential equations with weakly singular kernel. (English) Zbl 07490204 Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022). MSC: 45D05 45B05 65R20 PDF BibTeX XML Cite \textit{H. Belhireche} and \textit{H. Guebbai}, Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022; Zbl 07490204) Full Text: DOI OpenURL
Khazaeian, Jafar; Parandin, Noradin; Yaghobi, Farajollah; Karamikabir, Nasrin Developing an iterative method to solve two- and three-dimensional mixed Volterra-Fredholm integral equations. (English) Zbl 07487921 J. Math. Ext. 16, No. 2, Paper No. 6, 18 p. (2022). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{J. Khazaeian} et al., J. Math. Ext. 16, No. 2, Paper No. 6, 18 p. (2022; Zbl 07487921) Full Text: DOI OpenURL
Boichuk, Oleksandr; Feruk, Victor Boundary-value problems for weakly singular integral equations. (English) Zbl 1484.45001 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1379-1395 (2022). MSC: 45B05 45E99 45P05 47G10 15A09 PDF BibTeX XML Cite \textit{O. Boichuk} and \textit{V. Feruk}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1379--1395 (2022; Zbl 1484.45001) Full Text: DOI OpenURL
Ezquerro, J. A.; Hernández-Verón, M. A. Location of solutions of Fredholm-Nemytskii integral equations from a Whittaker-type operator. (English) Zbl 07483967 Mediterr. J. Math. 19, No. 1, Paper No. 46, 20 p. (2022). Reviewer: Anna Karczewska (Zielona Gora) MSC: 45B05 45L05 47H10 47H30 47N20 PDF BibTeX XML Cite \textit{J. A. Ezquerro} and \textit{M. A. Hernández-Verón}, Mediterr. J. Math. 19, No. 1, Paper No. 46, 20 p. (2022; Zbl 07483967) Full Text: DOI OpenURL
Wang, Min Multistep collocation method for Fredholm integral equations of the second kind. (English) Zbl 07483715 Appl. Math. Comput. 420, Article ID 126870, 16 p. (2022). MSC: 65L70 45B05 PDF BibTeX XML Cite \textit{M. Wang}, Appl. Math. Comput. 420, Article ID 126870, 16 p. (2022; Zbl 07483715) Full Text: DOI OpenURL
Barrera, D.; Bartoň, M.; Chiarella, I.; Remogna, S. On numerical solution of Fredholm and Hammerstein integral equations via Nyström method and Gaussian quadrature rules for splines. (English) Zbl 1484.65334 Appl. Numer. Math. 174, 71-88 (2022). MSC: 65R20 65D07 45B05 45G10 41A55 65D32 PDF BibTeX XML Cite \textit{D. Barrera} et al., Appl. Numer. Math. 174, 71--88 (2022; Zbl 1484.65334) Full Text: DOI OpenURL
Ducasse, Romain Threshold phenomenon and traveling waves for heterogeneous integral equations and epidemic models. (English) Zbl 07482285 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112788, 34 p. (2022). Reviewer: Alla Boikova (Penza) MSC: 45M05 45M15 45D05 45B05 35R09 35B40 92D30 PDF BibTeX XML Cite \textit{R. Ducasse}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112788, 34 p. (2022; Zbl 07482285) Full Text: DOI arXiv OpenURL
Shokri, Javad; Pishbin, Saeed On the convergence analysis of the Tau method applied to fourth-order partial differential equation based on Volterra-Fredholm integral equations. (English) Zbl 1484.65272 Appl. Numer. Math. 173, 144-157 (2022). MSC: 65M70 65M12 45B05 45D05 PDF BibTeX XML Cite \textit{J. Shokri} and \textit{S. Pishbin}, Appl. Numer. Math. 173, 144--157 (2022; Zbl 1484.65272) Full Text: DOI OpenURL
Bonnet-Ben Dhia, Anne-Sophie; Chandler-Wilde, Simon N.; Fliss, Sonia; Hazard, Christophe; Perfekt, Karl-Mikael; Tjandrawidjaja, Yohanes The complex-scaled half-space matching method. (English) Zbl 1481.35131 SIAM J. Math. Anal. 54, No. 1, 512-557 (2022). MSC: 35J05 35J25 45B05 45F15 65N30 65N38 PDF BibTeX XML Cite \textit{A.-S. Bonnet-Ben Dhia} et al., SIAM J. Math. Anal. 54, No. 1, 512--557 (2022; Zbl 1481.35131) Full Text: DOI arXiv OpenURL
Sidi, Avram \(\mathrm{PVTSI}^{(m)}\): a novel approach to computation of Hadamard finite parts of nonperiodic singular integrals. (English) Zbl 07462048 Calcolo 59, No. 1, Paper No. 7, 36 p. (2022). MSC: 41A55 41A60 45B05 45E05 65B05 65B15 65D30 65D32 PDF BibTeX XML Cite \textit{A. Sidi}, Calcolo 59, No. 1, Paper No. 7, 36 p. (2022; Zbl 07462048) Full Text: DOI OpenURL
Abdelkawy, M. A.; Amin, A. Z. M.; Lopes, António M. Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations. (English) Zbl 07453264 Comput. Appl. Math. 41, No. 1, Paper No. 2, 21 p. (2022). MSC: 45B05 35R11 65M70 91G60 PDF BibTeX XML Cite \textit{M. A. Abdelkawy} et al., Comput. Appl. Math. 41, No. 1, Paper No. 2, 21 p. (2022; Zbl 07453264) Full Text: DOI OpenURL
Ziari, S.; Bica, A. M.; Ezzati, R. Successive approximations method for fuzzy Fredholm-Volterra integral equations of the second kind. (English) Zbl 1483.65235 Allahviranloo, Tofigh (ed.) et al., Advances in fuzzy integral and differential equations. Cham: Springer. Stud. Fuzziness Soft Comput. 412, 209-228 (2022). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{S. Ziari} et al., Stud. Fuzziness Soft Comput. 412, 209--228 (2022; Zbl 1483.65235) Full Text: DOI OpenURL
Fariborzi Araghi, Mohammad Ali; Noeiaghdam, Samad Finding optimal results in the homotopy analysis method to solve fuzzy integral equations. (English) Zbl 1483.65215 Allahviranloo, Tofigh (ed.) et al., Advances in fuzzy integral and differential equations. Cham: Springer. Stud. Fuzziness Soft Comput. 412, 173-195 (2022). MSC: 65R20 26E50 45B05 45D05 65H20 PDF BibTeX XML Cite \textit{M. A. Fariborzi Araghi} and \textit{S. Noeiaghdam}, Stud. Fuzziness Soft Comput. 412, 173--195 (2022; Zbl 1483.65215) Full Text: DOI OpenURL
Ramesh Kumar, D. Common solution to a pair of nonlinear Fredholm and Volterra integral equations and nonlinear fractional differential equations. (English) Zbl 07444661 J. Comput. Appl. Math. 404, Article ID 113907, 16 p. (2022). MSC: 47H10 54H25 45B05 34A08 PDF BibTeX XML Cite \textit{D. Ramesh Kumar}, J. Comput. Appl. Math. 404, Article ID 113907, 16 p. (2022; Zbl 07444661) Full Text: DOI OpenURL
Hernández-Verón, M. A.; Martínez, Eulalia; Singh, Sukhjit A reliable treatment to solve nonlinear Fredholm integral equations with non-separable kernel. (English) Zbl 1480.65376 J. Comput. Appl. Math. 404, Article ID 113115, 13 p. (2022). MSC: 65R20 45B05 45G10 PDF BibTeX XML Cite \textit{M. A. Hernández-Verón} et al., J. Comput. Appl. Math. 404, Article ID 113115, 13 p. (2022; Zbl 1480.65376) Full Text: DOI OpenURL
De Bonis, Maria Carmela; Stanić, Marija P.; Tomović Mladenović, Tatjana V. Nyström methods for approximating the solutions of an integral equation arising from a problem in mathematical biology. (English) Zbl 1482.65233 Appl. Numer. Math. 171, 193-211 (2022). MSC: 65R20 45B05 92-08 PDF BibTeX XML Cite \textit{M. C. De Bonis} et al., Appl. Numer. Math. 171, 193--211 (2022; Zbl 1482.65233) Full Text: DOI OpenURL
Ando, Kazunori; Kang, Hyeonbae; Miyanishi, Yoshihisa; Putinar, Mihai Spectral analysis of Neumann-Poincaré operator. (English) Zbl 07523907 Rev. Roum. Math. Pures Appl. 66, No. 3-4, 545-575 (2021). MSC: 31-03 31A10 45B05 47A45 47A70 47B06 74B05 78M22 PDF BibTeX XML Cite \textit{K. Ando} et al., Rev. Roum. Math. Pures Appl. 66, No. 3--4, 545--575 (2021; Zbl 07523907) OpenURL
Asim, Mohammad; George, Reny; Imdad, Mohammad Suzuki type multivalued contractions in \(C^\ast\)-algebra valued metric spaces with an application. (English) Zbl 1484.47102 AIMS Math. 6, No. 2, 1126-1139 (2021). MSC: 47H10 54H25 46L07 45B05 47H09 PDF BibTeX XML Cite \textit{M. Asim} et al., AIMS Math. 6, No. 2, 1126--1139 (2021; Zbl 1484.47102) Full Text: DOI OpenURL
Mosa, Gamal A.; Abdou, Mohamed A.; Rahby, Ahmed S. Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag. (English) Zbl 1485.65135 AIMS Math. 6, No. 8, 8525-8543 (2021); correction ibid. 7, No. 1, 258-259 (2022). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{G. A. Mosa} et al., AIMS Math. 6, No. 8, 8525--8543 (2021; Zbl 1485.65135) Full Text: DOI OpenURL
Phanyaem, Suvimol The integral equation approach for solving the average run length of EWMA procedure for autocorrelated process. (English) Zbl 07508949 Thail. Stat. 19, No. 3, 627-641 (2021). MSC: 62P30 45B05 62M10 PDF BibTeX XML Cite \textit{S. Phanyaem}, Thail. Stat. 19, No. 3, 627--641 (2021; Zbl 07508949) Full Text: Link OpenURL
Hou, Jinjiao; Niu, Jing; Xu, Minqiang; Ngolo, Welreach A new numerical method to solve nonlinear Volterra-Fredholm integro-differential equations. (English) Zbl 07499173 Math. Model. Anal. 26, No. 3, 469-478 (2021). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{J. Hou} et al., Math. Model. Anal. 26, No. 3, 469--478 (2021; Zbl 07499173) Full Text: DOI OpenURL
Shahsavaran, A. Application of Newton-Cotes quadrature rule for nonlinear Hammerstein integral equations. (English) Zbl 07498488 Iran. J. Numer. Anal. Optim. 11, No. 2, 385-399 (2021). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{A. Shahsavaran}, Iran. J. Numer. Anal. Optim. 11, No. 2, 385--399 (2021; Zbl 07498488) Full Text: DOI OpenURL
Safavi, M.; Khajehnasiri, A. A.; Jafari, A.; Banar, J. A new approach to numerical solution of nonlinear partial mixed Volterra-Fredholm integral equations via two-dimensional triangular functions. (English) Zbl 1483.65229 Malays. J. Math. Sci. 15, No. 3, 489-507 (2021). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{M. Safavi} et al., Malays. J. Math. Sci. 15, No. 3, 489--507 (2021; Zbl 1483.65229) Full Text: Link OpenURL
Mirzaei, Seyyed Mahmood; Amirfakhrian, Majid A multidimensional reverse interpolation method and its application in solving the multidimensional Fredholm integral equations. (English) Zbl 07490171 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 160, 13 p. (2021). MSC: 45B05 41A05 PDF BibTeX XML Cite \textit{S. M. Mirzaei} and \textit{M. Amirfakhrian}, Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 160, 13 p. (2021; Zbl 07490171) Full Text: DOI OpenURL
Erfanian, Majid; Zeidabadi, Hamed Solving of nonlinear Volterra integro-differential equations in the complex plane with periodic quasi-wavelets. (English) Zbl 07489844 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 221, 13 p. (2021). MSC: 65L60 44A45 45B05 65R20 PDF BibTeX XML Cite \textit{M. Erfanian} and \textit{H. Zeidabadi}, Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 221, 13 p. (2021; Zbl 07489844) Full Text: DOI OpenURL
Vu, Ho; Dong, Le Si Existence and uniqueness of solution for two-dimensional fuzzy Volterra-Fredholm integral equation. (English) Zbl 1485.45001 Thai J. Math. 19, No. 4, 1355-1365 (2021). MSC: 45D05 45B05 47H10 26E50 PDF BibTeX XML Cite \textit{H. Vu} and \textit{L. S. Dong}, Thai J. Math. 19, No. 4, 1355--1365 (2021; Zbl 1485.45001) Full Text: Link OpenURL
Beiglo, H.; Gachpazan, M.; Erfanian, M. Solving nonlinear Fredholm integral equations with PQWs in complex plane. (English) Zbl 1482.65231 Int. J. Dyn. Syst. Differ. Equ. 11, No. 1, 18-30 (2021). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{H. Beiglo} et al., Int. J. Dyn. Syst. Differ. Equ. 11, No. 1, 18--30 (2021; Zbl 1482.65231) Full Text: DOI OpenURL
Yuldashev, T. K.; Saburov, Kh. Kh. On a Fredholm integral equations of first kind with nonlinear deviation. (English) Zbl 1481.45001 Azerb. J. Math. 11, No. 2, 137-152 (2021). MSC: 45B05 PDF BibTeX XML Cite \textit{T. K. Yuldashev} and \textit{Kh. Kh. Saburov}, Azerb. J. Math. 11, No. 2, 137--152 (2021; Zbl 1481.45001) Full Text: Link OpenURL
Mohamed, Doaa Shokry; Abdessami, Dina Mohamed A comparison between Bernoulli-collocation method and Hermite-Galerkin method for solving two-dimensional mixed Volterra-Fredholm singular integral equations. (English) Zbl 1483.65222 Trans. A. Razmadze Math. Inst. 175, No. 2, 259-267 (2021). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{D. S. Mohamed} and \textit{D. M. Abdessami}, Trans. A. Razmadze Math. Inst. 175, No. 2, 259--267 (2021; Zbl 1483.65222) Full Text: Link OpenURL
Liu, Jia; Zhang, Tingjun; Clow, Gary D.; Jafarov, Elchin Application of Tikhonov regularization to reconstruct past climate record from borehole temperature. (English) Zbl 07484752 Inverse Probl. Sci. Eng. 29, No. 13, 3167-3189 (2021). MSC: 65Fxx 65Rxx 45Bxx PDF BibTeX XML Cite \textit{J. Liu} et al., Inverse Probl. Sci. Eng. 29, No. 13, 3167--3189 (2021; Zbl 07484752) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Mohammed, Nedal M.; Ghadle, Kirtiwant P. Some powerful techniques for solving nonlinear Volterra-Fredholm integral equations. (English) Zbl 07481787 J. Appl. Nonlinear Dyn. 10, No. 3, 461-469 (2021). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., J. Appl. Nonlinear Dyn. 10, No. 3, 461--469 (2021; Zbl 07481787) Full Text: DOI OpenURL
Mandal, Moumita; Kant, Kapil; Nelakanti, Gnaneshwar Discrete Legendre spectral methods for Hammerstein type weakly singular nonlinear Fredholm integral equations. (English) Zbl 1483.65220 Int. J. Comput. Math. 98, No. 11, 2251-2267 (2021). MSC: 65R20 45B05 45G10 PDF BibTeX XML Cite \textit{M. Mandal} et al., Int. J. Comput. Math. 98, No. 11, 2251--2267 (2021; Zbl 1483.65220) Full Text: DOI OpenURL
Elahi, Zaffer; Siddiqi, Shahid S.; Akram, Ghazala Laguerre method for solving linear system of Fredholm integral equations. (English) Zbl 1483.65214 Int. J. Comput. Math. 98, No. 11, 2175-2185 (2021). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{Z. Elahi} et al., Int. J. Comput. Math. 98, No. 11, 2175--2185 (2021; Zbl 1483.65214) Full Text: DOI OpenURL
Abdou, Afrah A. N.; Ahmad, Jamshaid Solving Fredholm integral inclusion for \(L\)-fuzzy mappings. (English) Zbl 1484.45012 Int. J. Comput. Math. 98, No. 12, 2393-2405 (2021). MSC: 45N05 45B05 54H25 46S40 PDF BibTeX XML Cite \textit{A. A. N. Abdou} and \textit{J. Ahmad}, Int. J. Comput. Math. 98, No. 12, 2393--2405 (2021; Zbl 1484.45012) Full Text: DOI OpenURL
El Majouti, Z.; El Jid, R.; Hajjaj, A. Numerical solution of two-dimensional Fredholm-Hammerstein integral equations on 2D irregular domains by using modified moving least-square method. (English) Zbl 1480.65374 Int. J. Comput. Math. 98, No. 8, 1574-1593 (2021). MSC: 65R20 45B05 45G10 PDF BibTeX XML Cite \textit{Z. El Majouti} et al., Int. J. Comput. Math. 98, No. 8, 1574--1593 (2021; Zbl 1480.65374) Full Text: DOI OpenURL
Paseban, Hag Shabnam; Osgooei, Elnaz; Ashpazzadeh, Elmira Alpert wavelet system for solving fractional nonlinear Fredholm integro-differential equations. (English) Zbl 07468464 Comput. Methods Differ. Equ. 9, No. 3, 762-773 (2021). MSC: 65Rxx 65Txx 45Bxx PDF BibTeX XML Cite \textit{H. S. Paseban} et al., Comput. Methods Differ. Equ. 9, No. 3, 762--773 (2021; Zbl 07468464) Full Text: DOI OpenURL
Otero, D.; La Torre, D.; Michailovich, O.; Vrscay, E. R. Optimization of structural similarity in mathematical imaging. (English) Zbl 1481.94028 Optim. Eng. 22, No. 4, 2367-2401 (2021). MSC: 94A08 90C25 68U10 68U05 65F22 45B05 PDF BibTeX XML Cite \textit{D. Otero} et al., Optim. Eng. 22, No. 4, 2367--2401 (2021; Zbl 1481.94028) Full Text: DOI arXiv OpenURL
Hamani, Fatima; Rahmoune, Azedine Solving nonlinear Volterra-Fredholm integral equations using an accurate spectral collocation method. (English) Zbl 07460168 Tatra Mt. Math. Publ. 80, 35-52 (2021). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{F. Hamani} and \textit{A. Rahmoune}, Tatra Mt. Math. Publ. 80, 35--52 (2021; Zbl 07460168) Full Text: DOI OpenURL
Tompé Weimbapou, E.; Abdourahman; Kengne, E. On delta-extension for a Noether operator. (English. Russian original) Zbl 1483.45002 Russ. Math. 65, No. 11, 34-45 (2021); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 11, 40-53 (2021). Reviewer: Deshna Loonker (Jodhpur) MSC: 45B05 45P05 PDF BibTeX XML Cite \textit{E. Tompé Weimbapou} et al., Russ. Math. 65, No. 11, 34--45 (2021; Zbl 1483.45002); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 11, 40--53 (2021) Full Text: DOI OpenURL
Crucinio, Francesca Romana Microthesis: A novel algorithm for solving Fredholm integral equations. (English) Zbl 1477.65267 Lond. Math. Soc., Newsl. 2021, No. 493, 57-58 (2021). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{F. R. Crucinio}, Lond. Math. Soc., Newsl. 2021, No. 493, 57--58 (2021; Zbl 1477.65267) Full Text: Link OpenURL
Ramesh Kumar, D. Common fixed point results under \(w\)-distance with applications to nonlinear integral equations and nonlinear fractional differential equations. (English) Zbl 07455225 Math. Slovaca 71, No. 6, 1511-1528 (2021). MSC: 47H10 54H25 45B05 34A08 PDF BibTeX XML Cite \textit{D. Ramesh Kumar}, Math. Slovaca 71, No. 6, 1511--1528 (2021; Zbl 07455225) Full Text: DOI OpenURL
Abildayeva, A. D.; Kaparova, R. M.; Assanova, A. T. To a unique solvability of a problem with integral condition for integro-differential equation. (English) Zbl 1481.45006 Lobachevskii J. Math. 42, No. 12, 2697-2706 (2021). MSC: 45J05 45B05 PDF BibTeX XML Cite \textit{A. D. Abildayeva} et al., Lobachevskii J. Math. 42, No. 12, 2697--2706 (2021; Zbl 1481.45006) Full Text: DOI OpenURL
Stanzhytskyi, O. M.; Karakenovar, S. G.; Uteshova, R. E. Averaging method and boundary value problems for systems of Fredholm integro-differential equations. (English) Zbl 07446955 Nonlinear Dyn. Syst. Theory 21, No. 1, 100-113 (2021). MSC: 45B05 45J05 PDF BibTeX XML Cite \textit{O. M. Stanzhytskyi} et al., Nonlinear Dyn. Syst. Theory 21, No. 1, 100--113 (2021; Zbl 07446955) Full Text: Link OpenURL
Esmaeili, H.; Mirzaee, F.; Moazami, D. A discrete collocation scheme to solve Fredholm integral equations of the second kind in high dimensions using radial kernels. (English) Zbl 1476.65339 S\(\vec{\text{e}}\)MA J. 78, No. 1, 93-117 (2021). MSC: 65R20 45A05 45B05 41A63 PDF BibTeX XML Cite \textit{H. Esmaeili} et al., S\(\vec{\text{e}}\)MA J. 78, No. 1, 93--117 (2021; Zbl 1476.65339) Full Text: DOI OpenURL
Panja, Sourav Kumar; Mandal, S. C. Interaction of magnetoelastic shear waves with a Griffith crack in an infinite strip. (English) Zbl 1483.35258 J. Eng. Math. 126, Paper No. 2, 12 p. (2021). MSC: 35Q74 74F15 74J10 74B99 74R10 74K10 78A25 42A38 45B05 65R20 PDF BibTeX XML Cite \textit{S. K. Panja} and \textit{S. C. Mandal}, J. Eng. Math. 126, Paper No. 2, 12 p. (2021; Zbl 1483.35258) Full Text: DOI OpenURL
Perfilieva, Irina; Tam, Pham Thi Minh Fuzzy transform for fuzzy Fredholm integral equation. (English) Zbl 1480.45004 Phuong, Nguyen Hoang (ed.) et al., Soft computing: biomedical and related applications. Cham: Springer. Stud. Comput. Intell. 981, 233-249 (2021). MSC: 45B05 26E50 PDF BibTeX XML Cite \textit{I. Perfilieva} and \textit{P. T. M. Tam}, Stud. Comput. Intell. 981, 233--249 (2021; Zbl 1480.45004) Full Text: DOI OpenURL
Vatulyan, A. O.; Nesterov, S. A. On coefficient inverse problems of heat conduction for functionally graded materials. (English) Zbl 1478.80001 Kusraev, Anatoly G. (ed.) et al., Operator theory and differential equations. Selected papers based on the presentations at the 15th conference on order analysis and related problems of mathematical modeling, Vladikavkaz, Russia, July 15–20, 2019. Cham: Birkhäuser. Trends Math., 303-316 (2021). MSC: 80A23 80A19 80M50 44A10 45B05 35R30 35R25 65J20 65R30 65R32 65H10 65K10 PDF BibTeX XML Cite \textit{A. O. Vatulyan} and \textit{S. A. Nesterov}, in: Operator theory and differential equations. Selected papers based on the presentations at the 15th conference on order analysis and related problems of mathematical modeling, Vladikavkaz, Russia, July 15--20, 2019. Cham: Birkhäuser. 303--316 (2021; Zbl 1478.80001) Full Text: DOI OpenURL
Wu, Bowei; Martinsson, Per-Gunnar Corrected trapezoidal rules for boundary integral equations in three dimensions. (English) Zbl 1477.65272 Numer. Math. 149, No. 4, 1025-1071 (2021). MSC: 65R20 45B05 65D32 PDF BibTeX XML Cite \textit{B. Wu} and \textit{P.-G. Martinsson}, Numer. Math. 149, No. 4, 1025--1071 (2021; Zbl 1477.65272) Full Text: DOI arXiv OpenURL
Amin, Rohul; Ahmadian, Ali; Alreshidi, Nasser Aedh; Gao, Liping; Salimi, Mehdi Existence and computational results to Volterra-Fredholm integro-differential equations involving delay term. (English) Zbl 1476.65332 Comput. Appl. Math. 40, No. 8, Paper No. 276, 18 p. (2021). MSC: 65R20 45J05 45B05 45D05 34K06 34K07 PDF BibTeX XML Cite \textit{R. Amin} et al., Comput. Appl. Math. 40, No. 8, Paper No. 276, 18 p. (2021; Zbl 1476.65332) Full Text: DOI OpenURL
Parand, K.; Hasani, M.; Jani, M.; Yari, H. Numerical simulation of Volterra-Fredholm integral equations using least squares support vector regression. (English) Zbl 1476.65347 Comput. Appl. Math. 40, No. 7, Paper No. 246, 15 p. (2021). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{K. Parand} et al., Comput. Appl. Math. 40, No. 7, Paper No. 246, 15 p. (2021; Zbl 1476.65347) Full Text: DOI OpenURL
Özdemir, İsmet An existence theorem for some nonlinear Volterra-Fredholm integral equations in the space of continuous tempered functions. (English) Zbl 1477.45003 Numer. Funct. Anal. Optim. 42, No. 11, 1287-1307 (2021). MSC: 45G10 45B05 45D05 47H08 47H10 PDF BibTeX XML Cite \textit{İ. Özdemir}, Numer. Funct. Anal. Optim. 42, No. 11, 1287--1307 (2021; Zbl 1477.45003) Full Text: DOI OpenURL
Ersoy, Merve Temizer; Furkan, Hasan On Fredholm-type integral equations in topological Hölder spaces. (English) Zbl 1478.45001 Numer. Funct. Anal. Optim. 42, No. 10, 1209-1221 (2021). Reviewer: Andreas Kleefeld (Jülich) MSC: 45B05 45G10 47H10 PDF BibTeX XML Cite \textit{M. T. Ersoy} and \textit{H. Furkan}, Numer. Funct. Anal. Optim. 42, No. 10, 1209--1221 (2021; Zbl 1478.45001) Full Text: DOI OpenURL
Ziari, Shokrollah; Allahviranloo, Tofigh; Pedrycz, Witold An improved numerical iterative method for solving nonlinear fuzzy Fredholm integral equations via Picard’s method and generalized quadrature rule. (English) Zbl 1476.65030 Comput. Appl. Math. 40, No. 6, Paper No. 230, 22 p. (2021). MSC: 65D32 65R20 45B05 46S40 PDF BibTeX XML Cite \textit{S. Ziari} et al., Comput. Appl. Math. 40, No. 6, Paper No. 230, 22 p. (2021; Zbl 1476.65030) Full Text: DOI OpenURL
Rostami, Yaser Two approximated techniques for solving of system of two-dimensional partial integral differential equations with weakly singular kernels. (English) Zbl 1476.65348 Comput. Appl. Math. 40, No. 6, Paper No. 217, 31 p. (2021). MSC: 65R20 45K05 45B05 45D05 35R09 65T60 PDF BibTeX XML Cite \textit{Y. Rostami}, Comput. Appl. Math. 40, No. 6, Paper No. 217, 31 p. (2021; Zbl 1476.65348) Full Text: DOI OpenURL
Behera, S.; Saha Ray, S. Euler wavelets method for solving fractional-order linear Volterra-Fredholm integro-differential equations with weakly singular kernels. (English) Zbl 1476.65335 Comput. Appl. Math. 40, No. 6, Paper No. 192, 30 p. (2021). MSC: 65R20 65T60 26A33 45B05 45D05 PDF BibTeX XML Cite \textit{S. Behera} and \textit{S. Saha Ray}, Comput. Appl. Math. 40, No. 6, Paper No. 192, 30 p. (2021; Zbl 1476.65335) Full Text: DOI OpenURL
Jiang, Xiaoying; Xu, Xiang On implied volatility recovery of a time-fractional Black-Scholes equation for double barrier options. (English) Zbl 1484.91518 Appl. Anal. 100, No. 15, 3145-3160 (2021). Reviewer: Deshna Loonker (Jodhpur) MSC: 91G60 65M06 65R20 35R11 45Q05 91G20 45B05 PDF BibTeX XML Cite \textit{X. Jiang} and \textit{X. Xu}, Appl. Anal. 100, No. 15, 3145--3160 (2021; Zbl 1484.91518) Full Text: DOI OpenURL
Samokhin, A. B.; Smirnov, Yu. G. Uniqueness and existence theorems for solving problems of scattering electromagnetic waves by anisotropic bodies. (English. Russian original) Zbl 07424696 Dokl. Math. 103, No. 1, 50-53 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 496, 59-63 (2021). MSC: 35Qxx 35Rxx 35Bxx 45Bxx 35Pxx 35Jxx PDF BibTeX XML Cite \textit{A. B. Samokhin} and \textit{Yu. G. Smirnov}, Dokl. Math. 103, No. 1, 50--53 (2021; Zbl 07424696); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 496, 59--63 (2021) Full Text: DOI OpenURL
Zhu, Xianghe; Peng, Chaoquan; Guo, Jun The direct scattering problem for penetrable obstacles included in a cavity. (English) Zbl 1479.35255 Indian J. Pure Appl. Math. 52, No. 2, 313-322 (2021). MSC: 35J05 45B05 35P25 PDF BibTeX XML Cite \textit{X. Zhu} et al., Indian J. Pure Appl. Math. 52, No. 2, 313--322 (2021; Zbl 1479.35255) Full Text: DOI OpenURL
Chakraborty, Samiran; Kant, Kapil; Nelakanti, Gnaneshwar Approximation methods for system of linear Fredholm integral equations of second kind. (English) Zbl 07423618 Appl. Math. Comput. 403, Article ID 126173, 18 p. (2021). MSC: 45Fxx 45B05 65R20 PDF BibTeX XML Cite \textit{S. Chakraborty} et al., Appl. Math. Comput. 403, Article ID 126173, 18 p. (2021; Zbl 07423618) Full Text: DOI OpenURL
Dibu, A. S.; Jacob, M. J.; Papaioannou, Apostolos D.; Ramsden, Lewis Delayed capital injections for a risk process with Markovian arrivals. (English) Zbl 1476.60127 Methodol. Comput. Appl. Probab. 23, No. 3, 1057-1076 (2021). MSC: 60J25 91B05 45B05 PDF BibTeX XML Cite \textit{A. S. Dibu} et al., Methodol. Comput. Appl. Probab. 23, No. 3, 1057--1076 (2021; Zbl 1476.60127) Full Text: DOI OpenURL
Shamas, Iqra; Ur Rehman, Saif; Aydi, Hassen; Mahmood, Tayyab; Ameer, Eskandar Unique fixed-point results in fuzzy metric spaces with an application to Fredholm integral equations. (English) Zbl 07413390 J. Funct. Spaces 2021, Article ID 4429173, 12 p. (2021). MSC: 54H25 54A40 54E40 45B05 PDF BibTeX XML Cite \textit{I. Shamas} et al., J. Funct. Spaces 2021, Article ID 4429173, 12 p. (2021; Zbl 07413390) Full Text: DOI OpenURL
Aydi, Hassen; Aslam, Muhammad; Sagheer, Dur-e-Shehwar; Batul, Samina; Ali, Rashid; Ameer, Eskandar Kannan-type contractions on new extended \(b\)-metric spaces. (English) Zbl 07413386 J. Funct. Spaces 2021, Article ID 7613684, 12 p. (2021). MSC: 54H25 54E40 45B05 PDF BibTeX XML Cite \textit{H. Aydi} et al., J. Funct. Spaces 2021, Article ID 7613684, 12 p. (2021; Zbl 07413386) Full Text: DOI OpenURL
Kant, Kapil; Mandal, Moumita; Nelakanti, Gnaneshwar Jacobi spectral Galerkin methods for a class of nonlinear weakly singular Volterra integral equations. (English) Zbl 07409156 Adv. Appl. Math. Mech. 13, No. 5, 1227-1260 (2021). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{K. Kant} et al., Adv. Appl. Math. Mech. 13, No. 5, 1227--1260 (2021; Zbl 07409156) Full Text: DOI OpenURL
Ren, Kui; Zhao, Hongkai; Zhong, Yimin Separability of the kernel function in an integral formulation for the anisotropic radiative transfer equation. (English) Zbl 1475.45002 SIAM J. Math. Anal. 53, No. 5, 5613-5645 (2021). MSC: 45B05 85A25 33C55 35Q79 65R20 PDF BibTeX XML Cite \textit{K. Ren} et al., SIAM J. Math. Anal. 53, No. 5, 5613--5645 (2021; Zbl 1475.45002) Full Text: DOI arXiv OpenURL
Lai, Ru-Yu; Zhou, Hanming Inverse source problems in transport equations with external forces. (English) Zbl 1483.35174 J. Differ. Equations 302, 728-752 (2021). MSC: 35Q49 53C65 35R30 35A01 35A02 45B05 44A12 PDF BibTeX XML Cite \textit{R.-Y. Lai} and \textit{H. Zhou}, J. Differ. Equations 302, 728--752 (2021; Zbl 1483.35174) Full Text: DOI arXiv OpenURL
Ezquerro, J. A.; Hernández-Verón, M. A. Restricted global convergence domains for integral equations of the Fredholm-Hammerstein type. (English) Zbl 1470.65213 Singh, Harendra (ed.) et al., Topics in integral and integro-differential equations. Theory and applications. Cham: Springer. Stud. Syst. Decis. Control 340, 125-148 (2021). MSC: 65R20 45B05 47H30 65J15 PDF BibTeX XML Cite \textit{J. A. Ezquerro} and \textit{M. A. Hernández-Verón}, Stud. Syst. Decis. Control 340, 125--148 (2021; Zbl 1470.65213) Full Text: DOI OpenURL
Ogata, Hidenori A numerical method for Fredholm integral equations of the second kind by the IMT-type DE rules. (English) Zbl 1470.65217 Japan J. Ind. Appl. Math. 38, No. 3, 715-729 (2021). MSC: 65R20 45B05 65D32 PDF BibTeX XML Cite \textit{H. Ogata}, Japan J. Ind. Appl. Math. 38, No. 3, 715--729 (2021; Zbl 1470.65217) Full Text: DOI OpenURL
Occorsio, Donatella; Russo, Maria Grazia A mixed collocation scheme for solving second kind Fredholm integral equations in \([-1,1]\). (English) Zbl 1470.65216 ETNA, Electron. Trans. Numer. Anal. 54, 443-459 (2021). MSC: 65R20 45B05 45L05 65D05 PDF BibTeX XML Cite \textit{D. Occorsio} and \textit{M. G. Russo}, ETNA, Electron. Trans. Numer. Anal. 54, 443--459 (2021; Zbl 1470.65216) Full Text: DOI Link OpenURL
Ismail, Mourad E. H.; Zhang, Ruiming Completely monotonic Fredholm determinants. (English) Zbl 1481.33010 Baumann, Gerd (ed.), New sinc methods of numerical analysis. Festschrift in honor of Frank Stenger’s 80th birthday. Based on the presentations at the symposium, Rhodes, Greece, September 13–18, 2018. Cham: Birkhäuser. Trends Math., 299-321 (2021). MSC: 33C47 15B52 26A48 45B05 PDF BibTeX XML Cite \textit{M. E. H. Ismail} and \textit{R. Zhang}, in: New sinc methods of numerical analysis. Festschrift in honor of Frank Stenger's 80th birthday. Based on the presentations at the symposium, Rhodes, Greece, September 13--18, 2018. Cham: Birkhäuser. 299--321 (2021; Zbl 1481.33010) Full Text: DOI OpenURL
Nedaiasl, Khadijeh Sinc projection solutions of Fredholm integral equations. (English) Zbl 1474.65511 Baumann, Gerd (ed.), New sinc methods of numerical analysis. Festschrift in honor of Frank Stenger’s 80th birthday. Based on the presentations at the symposium, Rhodes, Greece, September 13–18, 2018. Cham: Birkhäuser. Trends Math., 35-53 (2021). MSC: 65R20 45B05 45G10 PDF BibTeX XML Cite \textit{K. Nedaiasl}, in: New sinc methods of numerical analysis. Festschrift in honor of Frank Stenger's 80th birthday. Based on the presentations at the symposium, Rhodes, Greece, September 13--18, 2018. Cham: Birkhäuser. 35--53 (2021; Zbl 1474.65511) Full Text: DOI OpenURL
Gaikovich, Konstantin P.; Maksimovitch, Yelena S.; Badeev, Vitaly A. Near-field subsurface tomography and holography based on bistatic measurements with variable base. (English) Zbl 1478.78030 Inverse Probl. Sci. Eng. 29, No. 5, 663-680 (2021). MSC: 78A46 65R32 78A40 45B05 PDF BibTeX XML Cite \textit{K. P. Gaikovich} et al., Inverse Probl. Sci. Eng. 29, No. 5, 663--680 (2021; Zbl 1478.78030) Full Text: DOI OpenURL
Xu, Ming-Ming; Sulaiman, Jumat; Ali, Labiyana Hanif Half-sweep SOR iterative method using linear rational finite difference approximation for first-order Fredholm integro-differential equations. (English) Zbl 1470.65222 Int. J. Math. Comput. Sci. 16, No. 4, 1555-1570 (2021). MSC: 65R20 45B05 45J05 PDF BibTeX XML Cite \textit{M.-M. Xu} et al., Int. J. Math. Comput. Sci. 16, No. 4, 1555--1570 (2021; Zbl 1470.65222) Full Text: Link OpenURL
Cimen, Erkan; Cakir, Musa A uniform numerical method for solving singularly perturbed Fredholm integro-differential problem. (English) Zbl 1476.65336 Comput. Appl. Math. 40, No. 2, Paper No. 42, 14 p. (2021). MSC: 65R20 45J05 45B05 65L10 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{E. Cimen} and \textit{M. Cakir}, Comput. Appl. Math. 40, No. 2, Paper No. 42, 14 p. (2021; Zbl 1476.65336) Full Text: DOI OpenURL
Geçmen, Merve Zeynep; Çelik, Ercan Numerical solution of Volterra-Fredholm integral equations with Hosoya polynomials. (English) Zbl 1469.65175 Math. Methods Appl. Sci. 44, No. 14, 11166-11173 (2021). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{M. Z. Geçmen} and \textit{E. Çelik}, Math. Methods Appl. Sci. 44, No. 14, 11166--11173 (2021; Zbl 1469.65175) Full Text: DOI OpenURL
Junghanns, Peter; Kaiser, Robert A note on the Fredholm theory of singular integral operators with Cauchy and Mellin kernels. II. (English) Zbl 1473.45003 Bastos, M. Amélia (ed.) et al., Operator theory, functional analysis and applications. Proceedings of the 30th international workshop on operator theory and its applications, IWOTA 2019, Lisbon, Portugal, July 22–26, 2019. Cham: Birkhäuser. Oper. Theory: Adv. Appl. 282, 353-392 (2021). MSC: 45B05 45E05 45E10 45P05 PDF BibTeX XML Cite \textit{P. Junghanns} and \textit{R. Kaiser}, Oper. Theory: Adv. Appl. 282, 353--392 (2021; Zbl 1473.45003) Full Text: DOI OpenURL
Ersoy, Merve Temizer Solutions of Fredholm type integral equations via the classical Schauder fixed point theorem. (English) Zbl 1480.45003 J. Integral Equations Appl. 33, No. 2, 259-270 (2021). Reviewer: Alexandru Mihai Bica (Oradea) MSC: 45B05 45G10 47H10 55M20 PDF BibTeX XML Cite \textit{M. T. Ersoy}, J. Integral Equations Appl. 33, No. 2, 259--270 (2021; Zbl 1480.45003) Full Text: DOI OpenURL
Laadjal, Zaid; Ma, Qing-Hua Existence and uniqueness of solutions for nonlinear Volterra-Fredholm integro-differential equation of fractional order with boundary conditions. (English) Zbl 1473.45011 Math. Methods Appl. Sci. 44, No. 10, 8215-8227 (2021). MSC: 45J05 45B05 45D05 26A33 PDF BibTeX XML Cite \textit{Z. Laadjal} and \textit{Q.-H. Ma}, Math. Methods Appl. Sci. 44, No. 10, 8215--8227 (2021; Zbl 1473.45011) Full Text: DOI OpenURL
Jain, Shobha; Jain, Shishir Fuzzy generalized weak contraction and its application to Fredholm non-linear integral equation in fuzzy metric space. (English) Zbl 1468.54046 J. Anal. 29, No. 3, 619-632 (2021). MSC: 54H25 54A40 54E40 45B05 PDF BibTeX XML Cite \textit{S. Jain} and \textit{S. Jain}, J. Anal. 29, No. 3, 619--632 (2021; Zbl 1468.54046) Full Text: DOI OpenURL