Shah, Syed Omar; Tunç, Cemil; Rizwan, Rizwan; Zada, Akbar; Khan, Qayyum Ullah; Ullah, Iftikhar; Ullah, Ibrar Bielecki-Ulam’s types stability analysis of Hammerstein and mixed integro-dynamic systems of non-linear form with instantaneous impulses on time scales. (English) Zbl 07568602 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 107, 21 p. (2022). MSC: 34N05 45M10 45J05 PDF BibTeX XML Cite \textit{S. O. Shah} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 107, 21 p. (2022; Zbl 07568602) Full Text: DOI OpenURL
Bohner, Martin; Scindia, Pallavi S.; Tikare, Sanket Qualitative results for nonlinear integro-dynamic equations via integral inequalities. (English) Zbl 07568601 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 106, 29 p. (2022). MSC: 34A12 34D20 34N05 45J05 47H10 PDF BibTeX XML Cite \textit{M. Bohner} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 106, 29 p. (2022; Zbl 07568601) Full Text: DOI OpenURL
Chávez, Alan; Khalil, Kamal; Kostić, Marko; Pinto, Manuel Multi-dimensional almost automorphic type functions and applications. (English) Zbl 07566856 Bull. Braz. Math. Soc. (N.S.) 53, No. 3, 801-851 (2022). MSC: 42A75 43A60 47D99 45J05 PDF BibTeX XML Cite \textit{A. Chávez} et al., Bull. Braz. Math. Soc. (N.S.) 53, No. 3, 801--851 (2022; Zbl 07566856) Full Text: DOI OpenURL
Foukrach, Djamal; Bouriah, Soufyane; Benchohra, Mouffak; Henderson, Johnny Periodic solutions for nonlinear Volterra-Fredholm integro-differential equations with \(\psi \)-Caputo fractional derivative. (English) Zbl 07563177 Mem. Differ. Equ. Math. Phys. 86, 51-68 (2022). MSC: 45J05 34A08 34A12 34B40 PDF BibTeX XML Cite \textit{D. Foukrach} et al., Mem. Differ. Equ. Math. Phys. 86, 51--68 (2022; Zbl 07563177) Full Text: Link OpenURL
Lillemäe, Margus; Pedas, Arvet; Vikerpuur, Mikk Central part interpolation schemes for a class of fractional initial value problems. (English) Zbl 07562991 Acta Comment. Univ. Tartu. Math. 26, No. 1, 161-178 (2022). MSC: 65R20 34A08 45J05 45E10 65L05 65L60 PDF BibTeX XML Cite \textit{M. Lillemäe} et al., Acta Comment. Univ. Tartu. Math. 26, No. 1, 161--178 (2022; Zbl 07562991) Full Text: DOI OpenURL
Bothner, Thomas; Cafasso, Mattia; Tarricone, Sofia Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel. (English) Zbl 07561792 Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 3, 1505-1546 (2022). MSC: 30E25 42A38 45J05 PDF BibTeX XML Cite \textit{T. Bothner} et al., Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 3, 1505--1546 (2022; Zbl 07561792) Full Text: DOI OpenURL
Yuldashev, Tursun Kamaldinovich; Saburov, Khikmat Khazhibaevich; Abduvahobov, Tokhirzhon Akbarali ogli Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations with maxima. (English) Zbl 07556918 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 113-122 (2022). MSC: 45J05 47N20 PDF BibTeX XML Cite \textit{T. K. Yuldashev} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 113--122 (2022; Zbl 07556918) Full Text: DOI MNR OpenURL
Kostić, Marko \( \rho \)-almost periodic type functions in \({\mathbb R}^n\). (English) Zbl 07556916 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 80-96 (2022). MSC: 42A75 34G20 45J05 PDF BibTeX XML Cite \textit{M. Kostić}, Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 80--96 (2022; Zbl 07556916) Full Text: DOI MNR OpenURL
Bohner, Martin; Hristova, Snezhana Stability for generalized Caputo proportional fractional delay integro-differential equations. (English) Zbl 07556228 Bound. Value Probl. 2022, Paper No. 14, 15 p. (2022). MSC: 34K20 34K37 45J05 PDF BibTeX XML Cite \textit{M. Bohner} and \textit{S. Hristova}, Bound. Value Probl. 2022, Paper No. 14, 15 p. (2022; Zbl 07556228) Full Text: DOI OpenURL
Buterin, S. A. Inverse spectral problem for integro-differential Sturm-Liouville operators with discontinuity conditions. (English. Russian original) Zbl 07552498 J. Math. Sci., New York 263, No. 6, 741-772 (2022); translation from Sovrem. Mat., Fundam. Napravl. 64, No. 3, 427-458 (2018). MSC: 45Jxx PDF BibTeX XML Cite \textit{S. A. Buterin}, J. Math. Sci., New York 263, No. 6, 741--772 (2022; Zbl 07552498); translation from Sovrem. Mat., Fundam. Napravl. 64, No. 3, 427--458 (2018) Full Text: DOI OpenURL
Zakora, D. A. Representation of solutions of a certain integro-differential equation and applications. (English. Russian original) Zbl 07552491 J. Math. Sci., New York 263, No. 5, 675-690 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 171, 78-93 (2019). MSC: 45J05 45N05 PDF BibTeX XML Cite \textit{D. A. Zakora}, J. Math. Sci., New York 263, No. 5, 675--690 (2022; Zbl 07552491); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 171, 78--93 (2019) Full Text: DOI OpenURL
El-Gamel, Mohamed; Mohamed, Ola Nonlinear second order systems of Fredholm integro-differential equations. (English) Zbl 07550672 S\(\vec{\text{e}}\)MA J. 79, No. 2, 383-396 (2022). MSC: 65R20 45J05 45B05 65L60 PDF BibTeX XML Cite \textit{M. El-Gamel} and \textit{O. Mohamed}, S\(\vec{\text{e}}\)MA J. 79, No. 2, 383--396 (2022; Zbl 07550672) Full Text: DOI OpenURL
Bobodzhanov, Abdukhafiz A.; Kalimbetov, Burkhan T.; Safonov, Valeriy F. Algorithm of the regularization method for a singularly perturbed integro-differential equation with a rapidly decreasing kernel and rapidly oscillating inhomogeneity. (English) Zbl 07547860 J. Sib. Fed. Univ., Math. Phys. 15, No. 2, 216-225 (2022). MSC: 45Jxx 34Exx 45Kxx PDF BibTeX XML Cite \textit{A. A. Bobodzhanov} et al., J. Sib. Fed. Univ., Math. Phys. 15, No. 2, 216--225 (2022; Zbl 07547860) Full Text: DOI MNR OpenURL
Shah, Syed Omar; Khan, Zubair Stability in terms of Hyers-Ulam of non-linear Volterra Fredholm integro-delay dynamic system on time scales with fractional integrable impulses. (English) Zbl 07545194 Appl. Anal. Optim. 6, No. 1, 109-122 (2022). MSC: 45J05 34N05 34D20 34A37 45M10 PDF BibTeX XML Cite \textit{S. O. Shah} and \textit{Z. Khan}, Appl. Anal. Optim. 6, No. 1, 109--122 (2022; Zbl 07545194) Full Text: Link OpenURL
Benkhettou, Nadia; Aissani, Khalida; Salim, Abdelkrim; Benchohra, Mouffak; Tunç, Cemil Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses. (English) Zbl 07545192 Appl. Anal. Optim. 6, No. 1, 79-94 (2022). MSC: 34K30 34K37 34K35 34K45 47N20 45J05 PDF BibTeX XML Cite \textit{N. Benkhettou} et al., Appl. Anal. Optim. 6, No. 1, 79--94 (2022; Zbl 07545192) Full Text: Link OpenURL
Shah, Syed Omar; Zada, Akbar Hyers-Ulam stability of non-linear Volterra integro-delay dynamic system with fractional integrable impulses on time scales. (English) Zbl 1487.34172 Iran. J. Math. Sci. Inform. 17, No. 1, 85-97 (2022). MSC: 34N05 34G20 34A37 35B35 45J05 PDF BibTeX XML Cite \textit{S. O. Shah} and \textit{A. Zada}, Iran. J. Math. Sci. Inform. 17, No. 1, 85--97 (2022; Zbl 1487.34172) Full Text: Link OpenURL
Sene, Ndolane Fundamental results about the fractional integro-differential equation described with Caputo derivative. (English) Zbl 07539833 J. Funct. Spaces 2022, Article ID 9174488, 10 p. (2022). MSC: 45J05 26A33 PDF BibTeX XML Cite \textit{N. Sene}, J. Funct. Spaces 2022, Article ID 9174488, 10 p. (2022; Zbl 07539833) Full Text: DOI OpenURL
Jeelani, Mdi Begum; Alnahdi, Abeer S.; Almalahi, Mohammed A.; Abdo, Mohammed S.; Wahash, Hanan A.; Alharthi, Nadiyah Hussain Qualitative analyses of fractional integrodifferential equations with a variable order under the Mittag-Leffler power law. (English) Zbl 07539816 J. Funct. Spaces 2022, Article ID 6387351, 12 p. (2022). MSC: 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{M. B. Jeelani} et al., J. Funct. Spaces 2022, Article ID 6387351, 12 p. (2022; Zbl 07539816) Full Text: DOI OpenURL
Wu, Longbin; Chen, Zhong; Ding, Xiaohua A minimal search method for solving fractional integro-differential equations based on modified Legendre multiwavelets. (English) Zbl 1486.65300 J. Appl. Math. Comput. 68, No. 2, 1467-1483 (2022). MSC: 65R20 45J05 34K07 34K37 65J10 65L60 PDF BibTeX XML Cite \textit{L. Wu} et al., J. Appl. Math. Comput. 68, No. 2, 1467--1483 (2022; Zbl 1486.65300) Full Text: DOI OpenURL
Durmaz, Muhammet Enes; Cakir, Musa; Amirali, Ilhame; Amiraliyev, Gabil M. Numerical solution of singularly perturbed Fredholm integro-differential equations by homogeneous second order difference method. (English) Zbl 1486.65291 J. Comput. Appl. Math. 412, Article ID 114327, 15 p. (2022). MSC: 65R20 45J05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. E. Durmaz} et al., J. Comput. Appl. Math. 412, Article ID 114327, 15 p. (2022; Zbl 1486.65291) Full Text: DOI OpenURL
Assanova, A. T.; Nurmukanbet, S. N. A solvability of a problem for a Fredholm integro-differential equation with weakly singular kernel. (English) Zbl 07530750 Lobachevskii J. Math. 43, No. 1, 182-191 (2022). MSC: 45B05 45E05 45J05 PDF BibTeX XML Cite \textit{A. T. Assanova} and \textit{S. N. Nurmukanbet}, Lobachevskii J. Math. 43, No. 1, 182--191 (2022; Zbl 07530750) Full Text: DOI OpenURL
Taghipour, M.; Aminikhah, H. A fast collocation method for solving the weakly singular fractional integro-differential equation. (English) Zbl 07530564 Comput. Appl. Math. 41, No. 4, Paper No. 142, 38 p. (2022). MSC: 65M70 65R10 34K37 45J05 PDF BibTeX XML Cite \textit{M. Taghipour} and \textit{H. Aminikhah}, Comput. Appl. Math. 41, No. 4, Paper No. 142, 38 p. (2022; Zbl 07530564) Full Text: DOI OpenURL
Gürbüz, Burcu A numerical scheme for the solution of neutral integro-differential equations including variable delay. (English) Zbl 1486.65085 Math. Sci., Springer 16, No. 1, 13-21 (2022). MSC: 65L60 45J05 PDF BibTeX XML Cite \textit{B. Gürbüz}, Math. Sci., Springer 16, No. 1, 13--21 (2022; Zbl 1486.65085) Full Text: DOI OpenURL
Aryani, Elnaz; Babaei, Afshin; Valinejad, Ali A numerical technique for solving nonlinear fractional stochastic integro-differential equations with \(n\)-dimensional Wiener process. (English) Zbl 07527928 Comput. Methods Differ. Equ. 10, No. 1, 61-76 (2022). MSC: 45J05 60H20 26A33 65C30 PDF BibTeX XML Cite \textit{E. Aryani} et al., Comput. Methods Differ. Equ. 10, No. 1, 61--76 (2022; Zbl 07527928) Full Text: DOI OpenURL
Ahmad, Bashir; Alsaedi, Ahmed; Alblewi, Manal; Ntouyas, Sotiris K. An existence result for multi-term fractional integro-differential inclusions via nonlinear alternative for multi-valued contractive maps. (English) Zbl 07527199 Acta Math. Univ. Comen., New Ser. 91, No. 2, 121-140 (2022). MSC: 45J99 26A33 47N20 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Acta Math. Univ. Comen., New Ser. 91, No. 2, 121--140 (2022; Zbl 07527199) Full Text: Link OpenURL
Dang Quang Long; Dang Quang A Existence results and numerical method for solving a fourth-order nonlinear integro-differential equation. (English) Zbl 07525411 Numer. Algorithms 90, No. 2, 563-576 (2022). MSC: 65L10 65L03 45J05 PDF BibTeX XML Cite \textit{Dang Quang Long} and \textit{Dang Quang A}, Numer. Algorithms 90, No. 2, 563--576 (2022; Zbl 07525411) Full Text: DOI OpenURL
Issa, K.; Biazar, J.; Agboola, T. O.; Aliu, T. Perturbed Galerkin method for solving integro-differential equations. (English) Zbl 07525378 J. Appl. Math. 2022, Article ID 9748558, 8 p. (2022). MSC: 65Rxx 45Jxx 45Bxx PDF BibTeX XML Cite \textit{K. Issa} et al., J. Appl. Math. 2022, Article ID 9748558, 8 p. (2022; Zbl 07525378) Full Text: DOI OpenURL
Alnafisah, Yousef; Ahmed, Hamdy M. Neutral delay Hilfer fractional integrodifferential equations with fractional Brownian motion. (English) Zbl 07524394 Evol. Equ. Control Theory 11, No. 3, 925-937 (2022). MSC: 93B05 34K37 45J05 60G22 PDF BibTeX XML Cite \textit{Y. Alnafisah} and \textit{H. M. Ahmed}, Evol. Equ. Control Theory 11, No. 3, 925--937 (2022; Zbl 07524394) Full Text: DOI OpenURL
Pankratova, E. V. Spectral analysis of integro-differential equations arising in thermal physics. (English. Russian original) Zbl 1487.45013 Differ. Equ. 58, No. 2, 280-284 (2022); translation from Differ. Uravn. 58, No. 2, 275-279 (2022). Reviewer: Anar Assanova (Almaty) MSC: 45M05 45J05 45N05 45C05 44A10 74F05 PDF BibTeX XML Cite \textit{E. V. Pankratova}, Differ. Equ. 58, No. 2, 280--284 (2022; Zbl 1487.45013); translation from Differ. Uravn. 58, No. 2, 275--279 (2022) Full Text: DOI OpenURL
Davydov, A. V. On the asymptotics of the nonreal spectrum of the integro-differential Gurtin-Pipkin equation with relaxation kernels representable in the form of the Stielties integral. (English. Russian original) Zbl 07517589 Differ. Equ. 58, No. 2, 242-255 (2022); translation from Differ. Uravn. 58, No. 2, 238-251 (2022). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 45M05 45J05 45N05 47N20 PDF BibTeX XML Cite \textit{A. V. Davydov}, Differ. Equ. 58, No. 2, 242--255 (2022; Zbl 07517589); translation from Differ. Uravn. 58, No. 2, 238--251 (2022) Full Text: DOI OpenURL
Vlasov, V. V.; Rautian, N. A. Well-posed solvability of integro-differential equations in spaces of vector functions holomorphic in a sector. (English. Russian original) Zbl 07517588 Differ. Equ. 58, No. 2, 227-241 (2022); translation from Differ. Uravn. 58, No. 2, 223-237 (2022). MSC: 45J05 46E10 30E20 PDF BibTeX XML Cite \textit{V. V. Vlasov} and \textit{N. A. Rautian}, Differ. Equ. 58, No. 2, 227--241 (2022; Zbl 07517588); translation from Differ. Uravn. 58, No. 2, 223--237 (2022) Full Text: DOI OpenURL
Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Guesmia, A.; Sepúlveda, M. Well-posedness and stability for Schrödinger equations with infinite memory. (English) Zbl 07513955 Appl. Math. Optim. 85, No. 2, Paper No. 20, 31 p. (2022). MSC: 35Q41 35B40 35B45 35A01 35A02 35B35 35R09 45J05 74D05 PDF BibTeX XML Cite \textit{M. M. Cavalcanti} et al., Appl. Math. Optim. 85, No. 2, Paper No. 20, 31 p. (2022; Zbl 07513955) Full Text: DOI OpenURL
Hu, Bing; Xu, Minbo; Wang, Zhizhi; Lin, Jiahui; Zhu, Luyao; Wang, Dingjiang Existence of solutions of an impulsive integro-differential equation with a general boundary value condition. (English) Zbl 07513346 Math. Biosci. Eng. 19, No. 4, 4166-4177 (2022). MSC: 45J05 34B10 34K10 PDF BibTeX XML Cite \textit{B. Hu} et al., Math. Biosci. Eng. 19, No. 4, 4166--4177 (2022; Zbl 07513346) Full Text: DOI OpenURL
Hu, Bing; Wang, Zhizhi; Xu, Minbo; Wang, Dingjiang Quasilinearization method for an impulsive integro-differential system with delay. (English) Zbl 1485.93270 Math. Biosci. Eng. 19, No. 1, 612-623 (2022). MSC: 93C27 93B18 93C43 45J05 PDF BibTeX XML Cite \textit{B. Hu} et al., Math. Biosci. Eng. 19, No. 1, 612--623 (2022; Zbl 1485.93270) Full Text: DOI OpenURL
Marasi, H. R.; Derakhshan, M. H. Haar wavelet collocation method for variable order fractional integro-differential equations with stability analysis. (English) Zbl 07507659 Comput. Appl. Math. 41, No. 3, Paper No. 106, 19 p. (2022). MSC: 26A33 34A08 65L05 45J99 65R20 PDF BibTeX XML Cite \textit{H. R. Marasi} and \textit{M. H. Derakhshan}, Comput. Appl. Math. 41, No. 3, Paper No. 106, 19 p. (2022; Zbl 07507659) Full Text: DOI OpenURL
Foukrach, Djamal; Bouriah, Soufyane; Benchohra, Mouffak; Karapinar, Erdal Some new results for \(\psi\)-Hilfer fractional pantograph-type differential equation depending on \(\psi\)-Riemann-Liouville integral. (English) Zbl 1483.34013 J. Anal. 30, No. 1, 195-219 (2022). MSC: 34A08 34A12 34B40 45J05 PDF BibTeX XML Cite \textit{D. Foukrach} et al., J. Anal. 30, No. 1, 195--219 (2022; Zbl 1483.34013) Full Text: DOI OpenURL
Aissaoui, M. Z.; Bounaya, M. C.; Guebbai, H. Analysis of a nonlinear Volterra-Fredholm integro-differential equation. (English) Zbl 07506080 Quaest. Math. 45, No. 2, 307-325 (2022). MSC: 45J05 45G10 45D05 47H10 65R20 PDF BibTeX XML Cite \textit{M. Z. Aissaoui} et al., Quaest. Math. 45, No. 2, 307--325 (2022; Zbl 07506080) Full Text: DOI OpenURL
Kamalapriya, B.; Balachandran, K.; Annapoorani, N. Existence results for fractional integrodifferential equations of Sobolev type with deviating arguments. (English) Zbl 1486.45012 J. Appl. Nonlinear Dyn. 11, No. 1, 57-67 (2022). MSC: 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{B. Kamalapriya} et al., J. Appl. Nonlinear Dyn. 11, No. 1, 57--67 (2022; Zbl 1486.45012) Full Text: DOI OpenURL
Pham Huu Anh Ngoc; Le Trung Hieu On uniform asymptotic stability of nonlinear Volterra integro-differential equations. (English) Zbl 1485.93471 Int. J. Control 95, No. 3, 729-735 (2022). MSC: 93D20 93C15 45J05 PDF BibTeX XML Cite \textit{Pham Huu Anh Ngoc} and \textit{Le Trung Hieu}, Int. J. Control 95, No. 3, 729--735 (2022; Zbl 1485.93471) Full Text: DOI OpenURL
Taiwo, O. A.; Etuk, M. O.; Nwaeze, E.; Ogunniran, M. O. Enhanced moving least square method for the solution of Volterra integro-differential equation: an interpolating polynomial. (English) Zbl 1483.65233 J. Egypt. Math. Soc. 30, Paper No. 3, 20 p. (2022). MSC: 65R20 45D05 45J05 65D05 PDF BibTeX XML Cite \textit{O. A. Taiwo} et al., J. Egypt. Math. Soc. 30, Paper No. 3, 20 p. (2022; Zbl 1483.65233) Full Text: DOI OpenURL
Chang, Yong-Kui; Wei, Yanyan Pseudo \(S\)-asymptotically Bloch type periodic solutions to fractional integro-differential equations with Stepanov-like force terms. (English) Zbl 07502564 Z. Angew. Math. Phys. 73, No. 2, Paper No. 77, 17 p. (2022). MSC: 34K30 34K37 34K13 45J99 PDF BibTeX XML Cite \textit{Y.-K. Chang} and \textit{Y. Wei}, Z. Angew. Math. Phys. 73, No. 2, Paper No. 77, 17 p. (2022; Zbl 07502564) Full Text: DOI OpenURL
Liang, Xiaoqing; Young, Virginia R. Discounted probability of exponential Parisian ruin: diffusion approximation. (English) Zbl 1483.91058 J. Appl. Probab. 59, No. 1, 17-37 (2022). MSC: 91B05 90C59 45J05 PDF BibTeX XML Cite \textit{X. Liang} and \textit{V. R. Young}, J. Appl. Probab. 59, No. 1, 17--37 (2022; Zbl 1483.91058) Full Text: DOI OpenURL
Ramos, Priscila Santos; Sousa, J. Vanterler da C.; de Oliveira, E. Capelas Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. (English) Zbl 1483.34105 Evol. Equ. Control Theory 11, No. 1, 1-24 (2022). MSC: 34K30 34K37 34K45 45J05 47H08 47H10 PDF BibTeX XML Cite \textit{P. S. Ramos} et al., Evol. Equ. Control Theory 11, No. 1, 1--24 (2022; Zbl 1483.34105) Full Text: DOI OpenURL
Graef, John R.; Tunç, Cemil; Tunç, Osman Stability of time-delay systems via the Razumikhin method. (English) Zbl 1487.45006 Bol. Soc. Mat. Mex., III. Ser. 28, No. 2, Paper No. 26, 13 p. (2022). Reviewer: Sergiu Aizicovici (Verona) MSC: 45J05 45M10 34K20 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Bol. Soc. Mat. Mex., III. Ser. 28, No. 2, Paper No. 26, 13 p. (2022; Zbl 1487.45006) Full Text: DOI OpenURL
Tunc, Cemil An application of Lyapunov functions to properties of solutions of a perturbed fractional differential system. (English) Zbl 07491390 Int. J. Math. Comput. Sci. 17, No. 2, 537-550 (2022). MSC: 34D05 34K20 45J05 PDF BibTeX XML Cite \textit{C. Tunc}, Int. J. Math. Comput. Sci. 17, No. 2, 537--550 (2022; Zbl 07491390) Full Text: Link OpenURL
Borah, Jayanta; Bora, Swaroop Nandan Existence of mild solution for mixed Volterra-Fredholm integro fractional differential equation with non-instantaneous impulses. (English) Zbl 1485.45009 Differ. Equ. Dyn. Syst. 30, No. 1, 185-196 (2022). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45J05 34K30 34K37 34K45 PDF BibTeX XML Cite \textit{J. Borah} and \textit{S. N. Bora}, Differ. Equ. Dyn. Syst. 30, No. 1, 185--196 (2022; Zbl 1485.45009) Full Text: DOI OpenURL
Amin, Rohul; Senu, Norazak; Hafeez, Muhammad Bilal; Arshad, Noreen Izza; Ahmadian, Ali; Salahshour, Soheil; Sumelka, Wojciech A computational algorithm for the numerical solution of nonlinear fractional integral equations. (English) Zbl 1483.65210 Fractals 30, No. 1, Article ID 2240030, 8 p. (2022). MSC: 65R20 45G10 45J05 34A08 PDF BibTeX XML Cite \textit{R. Amin} et al., Fractals 30, No. 1, Article ID 2240030, 8 p. (2022; Zbl 1483.65210) Full Text: DOI OpenURL
Akbar, Muhammad; Nawaz, Rashid; Ahsan, Sumbal; Sooppy Nisar, Kottakkaran; Shah, Kamal; Mahmoud, Emad E.; Alqarni, M. M. Fractional power series approach for the solution of fractional-order integro-differential equations. (English) Zbl 1486.45018 Fractals 30, No. 1, Article ID 2240016, 8 p. (2022). MSC: 45L05 45J05 34A08 26A33 65R20 PDF BibTeX XML Cite \textit{M. Akbar} et al., Fractals 30, No. 1, Article ID 2240016, 8 p. (2022; Zbl 1486.45018) Full Text: DOI OpenURL
Khan, Zareen A.; Shah, Kamal; Mahariq, Ibrahim; Alrabaiah, Hussam Study of fractional order delay Cauchy non-autonomous evolution problems via degree theory. (English) Zbl 1486.45013 Fractals 30, No. 1, Article ID 2240013, 12 p. (2022). MSC: 45J05 45M10 26A33 47H11 PDF BibTeX XML Cite \textit{Z. A. Khan} et al., Fractals 30, No. 1, Article ID 2240013, 12 p. (2022; Zbl 1486.45013) Full Text: DOI OpenURL
Ahmad, Bashir; Alghamdi, Badrah; Agarwal, Ravi P.; Alsaedi, Ahmed Riemann-Liouville fractional integro-differential equations with fractional nonlocal multi-point boundary conditions. (English) Zbl 1486.45011 Fractals 30, No. 1, Article ID 2240002, 11 p. (2022). MSC: 45J05 26A33 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Fractals 30, No. 1, Article ID 2240002, 11 p. (2022; Zbl 1486.45011) Full Text: DOI OpenURL
Abed, Ayoob M.; Younis, Muhammed F.; Hamoud, Ahmed A. Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM. (English) Zbl 1484.49057 Nonlinear Funct. Anal. Appl. 27, No. 1, 189-201 (2022). MSC: 49M27 65K10 45J05 65R20 PDF BibTeX XML Cite \textit{A. M. Abed} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 189--201 (2022; Zbl 1484.49057) Full Text: Link OpenURL
Ali, Saeed M.; Shatanawi, Wasfi; Kassim, Mohammed D.; Abdo, Mohammed S.; Saleh, S. Investigating a class of generalized Caputo-type fractional integro-differential equations. (English) Zbl 1485.45006 J. Funct. Spaces 2022, Article ID 8103046, 9 p. (2022). MSC: 45J05 34K37 45M10 PDF BibTeX XML Cite \textit{S. M. Ali} et al., J. Funct. Spaces 2022, Article ID 8103046, 9 p. (2022; Zbl 1485.45006) Full Text: DOI OpenURL
Karapinar, E.; Fulga, A.; Shahzad, N.; Roldán López de Hierro, A. F. Solving integral equations by means of fixed point theory. (English) Zbl 1485.45010 J. Funct. Spaces 2022, Article ID 7667499, 16 p. (2022). MSC: 45J05 47H09 47H10 47N20 PDF BibTeX XML Cite \textit{E. Karapinar} et al., J. Funct. Spaces 2022, Article ID 7667499, 16 p. (2022; Zbl 1485.45010) Full Text: DOI OpenURL
Rezapour, Shahram; Boulfoul, Ali; Tellab, Brahim; Samei, Mohammad Esmael; Etemad, Sina; George, Reny Fixed point theory and the Liouville-Caputo integro-differential FBVP with multiple nonlinear terms. (English) Zbl 07487583 J. Funct. Spaces 2022, Article ID 6713533, 18 p. (2022). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45J05 26A33 47N20 PDF BibTeX XML Cite \textit{S. Rezapour} et al., J. Funct. Spaces 2022, Article ID 6713533, 18 p. (2022; Zbl 07487583) Full Text: DOI OpenURL
Raslan, K. R.; Ali, Khalid K.; Ahmed, Reda Gamal; Al-Jeaid, Hind K.; Abd-Elall Ibrahim, Amira Study of nonlocal boundary value problem for the Fredholm-Volterra integro-differential equation. (English) Zbl 1485.45011 J. Funct. Spaces 2022, Article ID 4773005, 16 p. (2022). MSC: 45J05 34K10 65R20 PDF BibTeX XML Cite \textit{K. R. Raslan} et al., J. Funct. Spaces 2022, Article ID 4773005, 16 p. (2022; Zbl 1485.45011) Full Text: DOI OpenURL
Sgibnev, Mikhail Sergeevich The renewal equation with unbounded inhomogeneous term. (English) Zbl 1484.45005 Sib. Èlektron. Mat. Izv. 19, No. 1, 81-90 (2022). MSC: 45E10 45M05 45J05 60K05 PDF BibTeX XML Cite \textit{M. S. Sgibnev}, Sib. Èlektron. Mat. Izv. 19, No. 1, 81--90 (2022; Zbl 1484.45005) Full Text: DOI OpenURL
Xu, Yang; Sun, Jian-Wen Positive solutions for nonlocal dispersal equation. (English) Zbl 1484.45011 Appl. Math. Lett. 128, Article ID 107894, 5 p. (2022). MSC: 45M20 45K05 45J05 PDF BibTeX XML Cite \textit{Y. Xu} and \textit{J.-W. Sun}, Appl. Math. Lett. 128, Article ID 107894, 5 p. (2022; Zbl 1484.45011) Full Text: DOI OpenURL
Deif, Sarah A.; de Oliveira, E. Capelas A system of Cauchy fractional differential equations and new properties of Mittag-Leffler functions with matrix argument. (English) Zbl 07472432 J. Comput. Appl. Math. 406, Article ID 113977, 17 p. (2022). MSC: 34A08 34A12 34A30 34D10 33E12 45J05 PDF BibTeX XML Cite \textit{S. A. Deif} and \textit{E. C. de Oliveira}, J. Comput. Appl. Math. 406, Article ID 113977, 17 p. (2022; Zbl 07472432) Full Text: DOI OpenURL
Omel’chenko, O. E. Mathematical framework for breathing Chimera states. (English) Zbl 07468883 J. Nonlinear Sci. 32, No. 2, Paper No. 22, 34 p. (2022). MSC: 34C15 34D05 34D06 34B30 45J05 PDF BibTeX XML Cite \textit{O. E. Omel'chenko}, J. Nonlinear Sci. 32, No. 2, Paper No. 22, 34 p. (2022; Zbl 07468883) Full Text: DOI arXiv OpenURL
Mahamat Barka, Ibrahim; Diop, Mamadou Abdoul; Ezzinbi, Khalil; Hassan Mahamat Hamit, Mahamat Controllability for nonlocal stochastic integrodifferential evolution equations with the lack of compactness. (English) Zbl 1482.93079 Stochastic Anal. Appl. 40, No. 1, 1-19 (2022). MSC: 93B05 93C15 45J05 60H10 47D06 PDF BibTeX XML Cite \textit{I. Mahamat Barka} et al., Stochastic Anal. Appl. 40, No. 1, 1--19 (2022; Zbl 1482.93079) Full Text: DOI OpenURL
Bohner, Martin; Tunç, Osman Qualitative analysis of integro-differential equations with variable retardation. (English) Zbl 07461151 Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 639-657 (2022). MSC: 45M10 45J05 PDF BibTeX XML Cite \textit{M. Bohner} and \textit{O. Tunç}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 639--657 (2022; Zbl 07461151) Full Text: DOI OpenURL
Sumit; Kumar, Sunil; Vigo-Aguiar, Jesus Analysis of a nonlinear singularly perturbed Volterra integro-differential equation. (English) Zbl 1481.65271 J. Comput. Appl. Math. 404, Article ID 113410, 13 p. (2022). MSC: 65R20 45J05 45D05 65L11 65L50 PDF BibTeX XML Cite \textit{Sumit} et al., J. Comput. Appl. Math. 404, Article ID 113410, 13 p. (2022; Zbl 1481.65271) Full Text: DOI OpenURL
Das, Pratibhamoy; Rana, Subrata; Ramos, Higinio On the approximate solutions of a class of fractional order nonlinear Volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis. (English) Zbl 1481.65265 J. Comput. Appl. Math. 404, Article ID 113116, 15 p. (2022). MSC: 65R20 45J05 45D05 26A33 PDF BibTeX XML Cite \textit{P. Das} et al., J. Comput. Appl. Math. 404, Article ID 113116, 15 p. (2022; Zbl 1481.65265) Full Text: DOI OpenURL
Wang, Liyan; Zhang, Qiang; Liu, Jijun On the dynamical model for COVID-19 with vaccination and time-delay effects: a model analysis supported by Yangzhou epidemic in 2021. (English) Zbl 1478.92119 Appl. Math. Lett. 125, Article ID 107783, 7 p. (2022). MSC: 92C60 45J05 PDF BibTeX XML Cite \textit{L. Wang} et al., Appl. Math. Lett. 125, Article ID 107783, 7 p. (2022; Zbl 1478.92119) Full Text: DOI OpenURL
Zhou, Ying Range shifts under constant-speed and accelerated climate warming. (English) Zbl 1478.92256 Bull. Math. Biol. 84, No. 1, Paper No. 1, 28 p. (2022). MSC: 92D40 86A08 45J05 PDF BibTeX XML Cite \textit{Y. Zhou}, Bull. Math. Biol. 84, No. 1, Paper No. 1, 28 p. (2022; Zbl 1478.92256) Full Text: DOI OpenURL
An, Le Thi Thanh; Jäger, Willi; Neuss-Radu, Maria Modeling and analysis of structured population in malaria. (English) Zbl 1478.92111 J. Math. Anal. Appl. 507, No. 2, Article ID 125816, 18 p. (2022). MSC: 92C60 45J05 92D25 PDF BibTeX XML Cite \textit{L. T. T. An} et al., J. Math. Anal. Appl. 507, No. 2, Article ID 125816, 18 p. (2022; Zbl 1478.92111) Full Text: DOI OpenURL
Lan, Guangqiang; Zhao, Mei; Qi, Siyuan Exponential stability of \(\theta\)-EM method for nonlinear stochastic Volterra integro-differential equations. (English) Zbl 1483.65017 Appl. Numer. Math. 172, 279-291 (2022). MSC: 65C30 60H10 60H20 45D05 45J05 65R20 PDF BibTeX XML Cite \textit{G. Lan} et al., Appl. Numer. Math. 172, 279--291 (2022; Zbl 1483.65017) Full Text: DOI OpenURL
Alam, Mehboob; Zada, Akbar; Riaz, Usman On a coupled impulsive fractional integrodifferential system with Hadamard derivatives. (English) Zbl 1483.45006 Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 8, 31 p. (2022). MSC: 45J05 45M10 26A33 PDF BibTeX XML Cite \textit{M. Alam} et al., Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 8, 31 p. (2022; Zbl 1483.45006) Full Text: DOI OpenURL
Liang, Jin; Mu, Yunyi; Xiao, Ti-Jun Nonlocal integro-differential equations of Sobolev type in Banach spaces involving \(\psi\)-Caputo fractional derivative. (English) Zbl 07423469 Banach J. Math. Anal. 16, No. 1, Paper No. 3, 29 p. (2022). Reviewer: Syed Abbas (Mandi) MSC: 34K37 34K30 44A10 26D15 45J99 47N20 PDF BibTeX XML Cite \textit{J. Liang} et al., Banach J. Math. Anal. 16, No. 1, Paper No. 3, 29 p. (2022; Zbl 07423469) Full Text: DOI OpenURL
Kapanadze, G.; Gulua, B. On one problem of the plane theory of viscoelasticity for a doubly-connected domain bounded by polygons. (English) Zbl 07564119 Semin. I. Vekua Inst. Appl. Math., Rep. 47, 36-41 (2021). MSC: 74B05 45J05 PDF BibTeX XML Cite \textit{G. Kapanadze} and \textit{B. Gulua}, Semin. I. Vekua Inst. Appl. Math., Rep. 47, 36--41 (2021; Zbl 07564119) Full Text: Link OpenURL
Musaev, Hummet K. The Cauchy problem for degenerate parabolic convolution equation. (English) Zbl 07563294 TWMS J. Pure Appl. Math. 12, No. 2, 278-288 (2021). MSC: 34G10 45J05 PDF BibTeX XML Cite \textit{H. K. Musaev}, TWMS J. Pure Appl. Math. 12, No. 2, 278--288 (2021; Zbl 07563294) Full Text: Link OpenURL
Xu, Jiafa; Pervaiz, Bakhtawar; Zada, Akbar; Shah, Syed Omar Stability analysis of causal integral evolution impulsive systems on time scales. (English) Zbl 07557576 Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 3, 781-800 (2021). MSC: 34N05 34G20 35B35 45J05 PDF BibTeX XML Cite \textit{J. Xu} et al., Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 3, 781--800 (2021; Zbl 07557576) Full Text: DOI OpenURL
Dineshkumar, C.; Udhayakumar, R. A note on existence of global solutions for impulsive functional integrodifferential systems. (English) Zbl 07552020 Discontin. Nonlinearity Complex. 10, No. 3, 397-407 (2021). MSC: 45J05 47N20 PDF BibTeX XML Cite \textit{C. Dineshkumar} and \textit{R. Udhayakumar}, Discontin. Nonlinearity Complex. 10, No. 3, 397--407 (2021; Zbl 07552020) Full Text: DOI OpenURL
Madhuri, S.; G.V.S.R., Deekshitulu Approximate controllability of second order neutral stochastic integro differential equations with impulses driven by fractional Brownian motion. (English) Zbl 07552015 Discontin. Nonlinearity Complex. 10, No. 2, 333-345 (2021). MSC: 45R05 45J05 60H15 47N20 93B05 PDF BibTeX XML Cite \textit{S. Madhuri} and \textit{D. G. V. S. R.}, Discontin. Nonlinearity Complex. 10, No. 2, 333--345 (2021; Zbl 07552015) Full Text: DOI OpenURL
Graef, John R.; Tunç, Osman Asymptotic behavior of solutions of Volterra integro-differential equations with and without retardation. (English) Zbl 07543105 J. Integral Equations Appl. 33, No. 3, 289-300 (2021). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45D05 45M10 45M05 45J05 PDF BibTeX XML Cite \textit{J. R. Graef} and \textit{O. Tunç}, J. Integral Equations Appl. 33, No. 3, 289--300 (2021; Zbl 07543105) Full Text: DOI OpenURL
Tunç, Osman; Tunç, Cemil; Wen, Ching-Feng New results on the properties of solutions of a Caputo fractional differential system. (English) Zbl 1487.34112 Appl. Anal. Optim. 5, No. 3, 391-400 (2021). MSC: 34D20 34A08 45J05 PDF BibTeX XML Cite \textit{O. Tunç} et al., Appl. Anal. Optim. 5, No. 3, 391--400 (2021; Zbl 1487.34112) Full Text: Link OpenURL
Khelil, Kamel Ali; Ardjouni, Abdelouaheb; Djoudi, Ahcene Stability for neutral integro-dynamic equations with multiple functional delays on time scales. (English) Zbl 1487.34139 Tbil. Math. J. 14, No. 3, 127-140 (2021). MSC: 34K20 34N05 45D05 45J05 PDF BibTeX XML Cite \textit{K. A. Khelil} et al., Tbil. Math. J. 14, No. 3, 127--140 (2021; Zbl 1487.34139) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Sharif, Abdulrahman A.; Ghadle, Kirtiwant P. Existence and stability of solutions for a nonlinear fractional Volterra-Fredholm integro-differential equation in Banach spaces. (English) Zbl 07527971 J. Mahani Math. Res. Cent. 10, No. 1, 79-93 (2021). MSC: 58C30 45J05 26A33 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., J. Mahani Math. Res. Cent. 10, No. 1, 79--93 (2021; Zbl 07527971) Full Text: DOI OpenURL
Seny, Ouedraogo; Francis, Bassono; Rasmane, Yaro; Pare, Youssouf Comparison of three numerical analysis methods on a linear second kind Fredholm integro-differential equation. (English) Zbl 07527585 Adv. Differ. Equ. Control Process. 25, No. 1, 1-10 (2021). MSC: 65R20 45J05 45B05 65L99 PDF BibTeX XML Cite \textit{O. Seny} et al., Adv. Differ. Equ. Control Process. 25, No. 1, 1--10 (2021; Zbl 07527585) Full Text: DOI OpenURL
Mallika Arjunan, M.; Abdeljawad, Thabet; Kavitha, V.; Yousef, Ali On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses. (English) Zbl 1485.34152 Chaos Solitons Fractals 148, Article ID 111075, 13 p. (2021). MSC: 34G20 34A08 34A60 34K37 45J05 34K45 PDF BibTeX XML Cite \textit{M. Mallika Arjunan} et al., Chaos Solitons Fractals 148, Article ID 111075, 13 p. (2021; Zbl 1485.34152) Full Text: DOI OpenURL
Yang, He; Zhao, Yanxia Existence and optimal controls of non-autonomous impulsive integro-differential evolution equation with nonlocal conditions. (English) Zbl 1485.49014 Chaos Solitons Fractals 148, Article ID 111027, 9 p. (2021). MSC: 49J27 93C23 93C27 34K30 34K45 34K35 45J05 34A12 PDF BibTeX XML Cite \textit{H. Yang} and \textit{Y. Zhao}, Chaos Solitons Fractals 148, Article ID 111027, 9 p. (2021; Zbl 1485.49014) Full Text: DOI OpenURL
Ebaid, Abdelhalim; Cattani, Carlo; Al Juhani, Amnah S.; El-Zahar, Essam R. A novel exact solution for the fractional Ambartsumian equation. (English) Zbl 1487.45005 Adv. Difference Equ. 2021, Paper No. 88, 19 p. (2021). MSC: 45J05 26A33 34K37 65L99 PDF BibTeX XML Cite \textit{A. Ebaid} et al., Adv. Difference Equ. 2021, Paper No. 88, 19 p. (2021; Zbl 1487.45005) Full Text: DOI OpenURL
Thaiprayoon, Chatthai; Sudsutad, Weerawat; Ntouyas, Sotiris K. Mixed nonlocal boundary value problem for implicit fractional integro-differential equations via \(\psi\)-Hilfer fractional derivative. (English) Zbl 1487.34043 Adv. Difference Equ. 2021, Paper No. 50, 24 p. (2021). MSC: 34A08 45J05 26A33 34K37 34K20 PDF BibTeX XML Cite \textit{C. Thaiprayoon} et al., Adv. Difference Equ. 2021, Paper No. 50, 24 p. (2021; Zbl 1487.34043) Full Text: DOI OpenURL
Li, Yulong A note on generalized Abel equations with constant coefficients. (English) Zbl 1487.45007 Rocky Mt. J. Math. 51, No. 5, 1749-1760 (2021). MSC: 45J05 45E10 26A33 PDF BibTeX XML Cite \textit{Y. Li}, Rocky Mt. J. Math. 51, No. 5, 1749--1760 (2021; Zbl 1487.45007) Full Text: DOI Link OpenURL
Aryani, Elnaz; Babaei, Afshin; Valinejad, Ali An accurate approach based on modified hat functions for solving a system of fractional stochastic integro-differential equations. (English) Zbl 07523967 J. Math. Ext. 15, No. 5, Paper No. 2, 28 p. (2021). MSC: 60H20 45J05 65C30 PDF BibTeX XML Cite \textit{E. Aryani} et al., J. Math. Ext. 15, No. 5, Paper No. 2, 28 p. (2021; Zbl 07523967) Full Text: DOI OpenURL
Chadha, Alka; Bora, Swaroop Nandan Solvability of control problem for a nonlocal neutral stochastic fractional integro-differential inclusion with impulses. (English) Zbl 07523866 Math. Rep., Buchar. 23(73), No. 3, 265-294 (2021). MSC: 34K37 34K40 34K45 35R11 35R60 45J05 60H15 60H20 PDF BibTeX XML Cite \textit{A. Chadha} and \textit{S. N. Bora}, Math. Rep., Buchar. 23(73), No. 3, 265--294 (2021; Zbl 07523866) OpenURL
Zada, Mian Bahadur; Sarwar, Muhammad; George, Reny; Mitrović, Zoran D. Darbo-type \(\mathcal{Z}_{\mathrm{m}}\) and \(\mathcal{L}_{\mathrm{m}}\) contractions and its applications to Caputo fractional integro-differential equations. (English) Zbl 1484.54057 AIMS Math. 6, No. 6, 6340-6355 (2021). MSC: 54H25 34K37 45G10 45J05 47H09 47H10 PDF BibTeX XML Cite \textit{M. B. Zada} et al., AIMS Math. 6, No. 6, 6340--6355 (2021; Zbl 1484.54057) Full Text: DOI OpenURL
Suechoei, Apassara; Sa Ngiamsunthorn, Parinya Extremal solutions of \(\varphi\)-Caputo fractional evolution equations involving integral kernels. (English) Zbl 1484.34170 AIMS Math. 6, No. 5, 4734-4757 (2021). MSC: 34K30 34K37 35R11 45J05 PDF BibTeX XML Cite \textit{A. Suechoei} and \textit{P. Sa Ngiamsunthorn}, AIMS Math. 6, No. 5, 4734--4757 (2021; Zbl 1484.34170) Full Text: DOI OpenURL
Bobodzhanov, Abdukhafiz; Kalimbetov, Burkhan; Safonov, Valeriy Asymptotic solutions of singularly perturbed integro-differential systems with rapidly oscillating coefficients in the case of a simple spectrum. (English) Zbl 1484.34165 AIMS Math. 6, No. 8, 8835-8853 (2021). MSC: 34K26 45J05 45P05 PDF BibTeX XML Cite \textit{A. Bobodzhanov} et al., AIMS Math. 6, No. 8, 8835--8853 (2021; Zbl 1484.34165) Full Text: DOI OpenURL
Ahmad, Bashir; Alghamdi, Badrah; Alsaedi, Ahmed; Ntouyas, Sotiris K. Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions. (English) Zbl 1484.34171 AIMS Math. 6, No. 7, 7093-7110 (2021). MSC: 34K37 34B10 34K09 34K10 45J05 PDF BibTeX XML Cite \textit{B. Ahmad} et al., AIMS Math. 6, No. 7, 7093--7110 (2021; Zbl 1484.34171) Full Text: DOI OpenURL
Hamoud, Ahmed A. Uniqueness and stability results for Caputo fractional Volterra-Fredholm integro-differential equations. (English) Zbl 07510954 J. Sib. Fed. Univ., Math. Phys. 14, No. 3, 313-325 (2021). MSC: 26Axx 34Axx 45Jxx PDF BibTeX XML Cite \textit{A. A. Hamoud}, J. Sib. Fed. Univ., Math. Phys. 14, No. 3, 313--325 (2021; Zbl 07510954) Full Text: DOI MNR OpenURL
Gou, Haide; Li, Yongxiang A study on controllability of impulsive fractional evolution equations via resolvent operators. (English) Zbl 07509869 Bound. Value Probl. 2021, Paper No. 25, 22 p. (2021). MSC: 34K30 34K37 34K45 34K35 45J99 47N20 93B05 PDF BibTeX XML Cite \textit{H. Gou} and \textit{Y. Li}, Bound. Value Probl. 2021, Paper No. 25, 22 p. (2021; Zbl 07509869) Full Text: DOI OpenURL
Zarifzoda, S. K.; Yuldashev, T. K.; Djumakhon, I. Volterra-type integro-differential equations with two-point singular differential operator. (English) Zbl 1487.45010 Lobachevskii J. Math. 42, No. 15, 3784-3792 (2021). Reviewer: Sergiu Aizicovici (Verona) MSC: 45J05 45D05 PDF BibTeX XML Cite \textit{S. K. Zarifzoda} et al., Lobachevskii J. Math. 42, No. 15, 3784--3792 (2021; Zbl 1487.45010) Full Text: DOI OpenURL
Bodnaruk, S. B.; Gorodetskyĭ, V. V.; Kolisnyk, R. S.; Shevchuk, N. M. Nonlocal by time problem for some differential-operator equation in spaces of \(S\) and \(S'\) types. (Ukrainian. English summary) Zbl 07498744 Bukovyn. Mat. Zh. 9, No. 2, 53-69 (2021). MSC: 39B12 45J05 PDF BibTeX XML Cite \textit{S. B. Bodnaruk} et al., Bukovyn. Mat. Zh. 9, No. 2, 53--69 (2021; Zbl 07498744) Full Text: DOI OpenURL
Barazandeh, Y. Approximate solution for a system of fractional integro-differential equations by Müntz Legendre wavelets. (English) Zbl 07498471 Iran. J. Numer. Anal. Optim. 11, No. 1, 55-72 (2021). MSC: 65T60 45J05 26A33 42C10 PDF BibTeX XML Cite \textit{Y. Barazandeh}, Iran. J. Numer. Anal. Optim. 11, No. 1, 55--72 (2021; Zbl 07498471) Full Text: DOI OpenURL
Asswad, Rand; Boscain, Ugo; Turco, Giuseppina; Prandi, Dario; Sacchelli, Ludovic An auditory cortex model for sound processing. (English) Zbl 1486.92007 Nielsen, Frank (ed.) et al., Geometric science of information. 5th international conference, GSI 2021, Paris, France, July 21–23, 2021. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12829, 56-64 (2021). MSC: 92B20 45J05 PDF BibTeX XML Cite \textit{R. Asswad} et al., Lect. Notes Comput. Sci. 12829, 56--64 (2021; Zbl 1486.92007) Full Text: DOI OpenURL
Koundal, Reena; Kumar, Rakesh; Kumar, Ravinder; Srivastava, K.; Baleanu, D. A novel collocated-shifted Lucas polynomial approach for fractional integro-differential equations. (English) Zbl 1485.65132 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 167, 19 p. (2021). MSC: 65R20 65L60 65L03 34K37 45J05 PDF BibTeX XML Cite \textit{R. Koundal} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 167, 19 p. (2021; Zbl 1485.65132) Full Text: DOI OpenURL
Nawaz, Rashid; Farid, Samreen; Ayaz, Muhammad; Ahmad, Hijaz Application of new iterative method to fractional order integro-differential equations. (English) Zbl 1486.65296 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 220, 12 p. (2021). MSC: 65R20 45J05 34A08 PDF BibTeX XML Cite \textit{R. Nawaz} et al., Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 220, 12 p. (2021; Zbl 1486.65296) Full Text: DOI OpenURL
Li, Chenkuan Uniqueness of the Hadamard-type integral equations. (English) Zbl 1485.45002 Adv. Difference Equ. 2021, Paper No. 40, 15 p. (2021). MSC: 45E10 45J05 47N20 PDF BibTeX XML Cite \textit{C. Li}, Adv. Difference Equ. 2021, Paper No. 40, 15 p. (2021; Zbl 1485.45002) Full Text: DOI OpenURL
Bachar, Imed; Mâagli, Habib; Eltayeb, Hassan Existence and uniqueness of solutions for a class of fractional nonlinear boundary value problems under mild assumptions. (English) Zbl 1485.34026 Adv. Difference Equ. 2021, Paper No. 22, 11 p. (2021). MSC: 34A08 34B18 26A33 45J05 PDF BibTeX XML Cite \textit{I. Bachar} et al., Adv. Difference Equ. 2021, Paper No. 22, 11 p. (2021; Zbl 1485.34026) Full Text: DOI OpenURL