Li, Zhouxin; Liu, Ruishu Existence and concentration behavior of solutions to 1-Laplace equations on \(\mathbb{R}^N\). (English) Zbl 07285694 J. Differ. Equations 272, 399-432 (2021). MSC: 58E05 35J65 PDF BibTeX XML Cite \textit{Z. Li} and \textit{R. Liu}, J. Differ. Equations 272, 399--432 (2021; Zbl 07285694) Full Text: DOI
Ding, Lei; Sun, Mingzheng; Tian, Rushun A remark on the Ambrosetti-Prodi type problem. (English) Zbl 1445.35178 Appl. Math. Lett. 111, Article ID 106648, 7 p. (2021). MSC: 35J91 35J61 35J20 35J25 49J45 58E05 PDF BibTeX XML Cite \textit{L. Ding} et al., Appl. Math. Lett. 111, Article ID 106648, 7 p. (2021; Zbl 1445.35178) Full Text: DOI
Yao, Xudong; Li, Zhujun A Morse index formula for minimax type saddle points by a Ljusternik-Schnirelman minimax algorithm and its application in computation of multiple solutions of semilinear elliptic equation. (English) Zbl 1447.58016 J. Comput. Appl. Math. 382, Article ID 113076, 20 p. (2021). MSC: 58E05 58E30 35J61 65N12 65N30 PDF BibTeX XML Cite \textit{X. Yao} and \textit{Z. Li}, J. Comput. Appl. Math. 382, Article ID 113076, 20 p. (2021; Zbl 1447.58016) Full Text: DOI
Montezuma, Rafael A mountain pass theorem for minimal hypersurfaces with fixed boundary. (English) Zbl 07294609 Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 188, 29 p. (2020). MSC: 53C42 53C20 58E05 58E12 PDF BibTeX XML Cite \textit{R. Montezuma}, Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 188, 29 p. (2020; Zbl 07294609) Full Text: DOI
Khimshiashvili, Giorgi Isoperimetric duality in polygon spaces. (English) Zbl 07293450 Bull. Georgian Natl. Acad. Sci. (N.S.) 14, No. 1, 18-21 (2020). MSC: 58E05 52 PDF BibTeX XML Cite \textit{G. Khimshiashvili}, Bull. Georgian Natl. Acad. Sci. (N.S.) 14, No. 1, 18--21 (2020; Zbl 07293450) Full Text: Link
Bae, Jung-Hyun; Kim, Jae-Myoung Infinitely many solutions for polyharmonic equations of \(p(x)\)-Laplace type. (English) Zbl 07292708 Math. Methods Appl. Sci. 43, No. 17, 9814-9828 (2020). MSC: 35J92 35A01 35A15 58E05 PDF BibTeX XML Cite \textit{J.-H. Bae} and \textit{J.-M. Kim}, Math. Methods Appl. Sci. 43, No. 17, 9814--9828 (2020; Zbl 07292708) Full Text: DOI
Galewski, Marek Localization properties for nonlinear equations involving monotone operators. (English) Zbl 07292705 Math. Methods Appl. Sci. 43, No. 17, 9776-9789 (2020). MSC: 47H05 35B38 39A14 47H14 47J05 58E05 PDF BibTeX XML Cite \textit{M. Galewski}, Math. Methods Appl. Sci. 43, No. 17, 9776--9789 (2020; Zbl 07292705) Full Text: DOI
Mederski, Jarosław Nonradial solutions of nonlinear scalar field equations. (English) Zbl 07278311 Nonlinearity 33, No. 12, 6349-6380 (2020). MSC: 35J20 58E05 PDF BibTeX XML Cite \textit{J. Mederski}, Nonlinearity 33, No. 12, 6349--6380 (2020; Zbl 07278311) Full Text: DOI
Haghshenas, Hadi; Afrouzi, Ghasem A. Existence results for a fourth-order elastic beam equation via the variational approach. (English) Zbl 07274487 Afr. Mat. 31, No. 7-8, 1379-1386 (2020). MSC: 34B15 58E05 PDF BibTeX XML Cite \textit{H. Haghshenas} and \textit{G. A. Afrouzi}, Afr. Mat. 31, No. 7--8, 1379--1386 (2020; Zbl 07274487) Full Text: DOI
Knauf, Andreas; Martynchuk, Nikolay Topology change of level sets in Morse theory. (English) Zbl 07271413 Ark. Mat. 58, No. 2, 333-356 (2020). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J39 37N05 55R25 57N65 57R65 58E05 70F07 70F10 70H33 PDF BibTeX XML Cite \textit{A. Knauf} and \textit{N. Martynchuk}, Ark. Mat. 58, No. 2, 333--356 (2020; Zbl 07271413) Full Text: DOI
Burghelea, Dan Alternative to Morse-Novikov theory for a closed 1-form. I. (English) Zbl 07270582 Eur. J. Math. 6, No. 3, 713-750 (2020). MSC: 57R 55N35 46M20 57R19 57R70 58E05 PDF BibTeX XML Cite \textit{D. Burghelea}, Eur. J. Math. 6, No. 3, 713--750 (2020; Zbl 07270582) Full Text: DOI
Nori, Ali Ashraf; Nyamoradi, Nemat; Eghbali, Nasrin Multiplicity of solutions for Kirchhoff fractional differential equations involving the Liouville-Weyl fractional derivatives. (English) Zbl 07269801 J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 1, 13-31 (2020) and Izv. Nats. Akad. Nauk Armen., Mat. 55, No. 1, 19-42 (2020). MSC: 34A08 58E05 58E30 PDF BibTeX XML Cite \textit{A. A. Nori} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 1, 13--31 (2020; Zbl 07269801) Full Text: DOI
Boizan Batista, Erica; Ferreira Costa, João Carlos; Nuño-Ballesteros, Juan J. Loops in generalized Reeb graphs associated to stable circle-valued functions. (English) Zbl 07269273 J. Singul. 22, 104-113 (2020). MSC: 05C38 05C30 05E45 58E05 58K15 PDF BibTeX XML Cite \textit{E. Boizan Batista} et al., J. Singul. 22, 104--113 (2020; Zbl 07269273) Full Text: DOI
Dhar, Sougata; Kong, Lingju A critical point approach to multiplicity results for a fractional boundary value problem. (English) Zbl 07258924 Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3617-3633 (2020). MSC: 34B15 34A08 47J30 58E05 PDF BibTeX XML Cite \textit{S. Dhar} and \textit{L. Kong}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3617--3633 (2020; Zbl 07258924) Full Text: DOI
Alghanemi, Azeb; Chtioui, Hichem Prescribing scalar curvatures on \( n \)-dimensional manifolds, \( 4 \le n \le 6 \). (English) Zbl 07258539 C. R. Acad. Bulg. Sci. 73, No. 2, 163-169 (2020). Reviewer: Angela Slavova (Sofia) MSC: 58E05 35J60 PDF BibTeX XML Cite \textit{A. Alghanemi} and \textit{H. Chtioui}, C. R. Acad. Bulg. Sci. 73, No. 2, 163--169 (2020; Zbl 07258539) Full Text: DOI
Kozlov, Dmitry N. Organized collapse. An introduction to discrete Morse theory. (English) Zbl 07258477 Graduate Studies in Mathematics 207. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5701-3/hbk; 978-1-4704-6008-2/ebook). xxiii, 312 p. (2020). Reviewer: Matthew Zaremsky (Albany) MSC: 57Q10 05C70 06A07 55U10 57-02 57Q05 58E05 PDF BibTeX XML Cite \textit{D. N. Kozlov}, Organized collapse. An introduction to discrete Morse theory. Providence, RI: American Mathematical Society (AMS) (2020; Zbl 07258477)
Knudson, Kevin P. Book review of: N. Scoville, Discrete Morse theory. (English) Zbl 1443.00004 Am. Math. Mon. 127, No. 8, 763-768 (2020). MSC: 00A17 58-01 58E05 55-01 55U05 55U10 57Q05 57Q10 PDF BibTeX XML Cite \textit{K. P. Knudson}, Am. Math. Mon. 127, No. 8, 763--768 (2020; Zbl 1443.00004) Full Text: DOI
Khimshiashvili, G.; Panina, G.; Siersma, D. Extremal areas of polygons with fixed perimeter. (English. Russian original) Zbl 07253527 J. Math. Sci., New York 247, No. 5, 731-737 (2020); translation from Zap. Nauchn. Semin. POMI 481, 136-145 (2019). Reviewer: Gaetano Siciliano (São Paulo) MSC: 51M25 58E05 PDF BibTeX XML Cite \textit{G. Khimshiashvili} et al., J. Math. Sci., New York 247, No. 5, 731--737 (2020; Zbl 07253527); translation from Zap. Nauchn. Semin. POMI 481, 136--145 (2019) Full Text: DOI
Ambrosio, Vincenzo; Rădulescu, Vicenţiu D. Fractional double-phase patterns: concentration and multiplicity of solutions. (English. French summary) Zbl 1448.35538 J. Math. Pures Appl. (9) 142, 101-145 (2020). MSC: 35R11 35J61 47J30 58E05 PDF BibTeX XML Cite \textit{V. Ambrosio} and \textit{V. D. Rădulescu}, J. Math. Pures Appl. (9) 142, 101--145 (2020; Zbl 1448.35538) Full Text: DOI
Yu, Yuanyang; Zhao, Fukun; Zhao, Leiga Positive and sign-changing least energy solutions for a fractional Schrödinger-Poisson system with critical exponent. (English) Zbl 1448.35425 Appl. Anal. 99, No. 13, 2229-2257 (2020). MSC: 35Q40 35J50 58E05 81Q05 35B33 35B10 35R11 26A33 PDF BibTeX XML Cite \textit{Y. Yu} et al., Appl. Anal. 99, No. 13, 2229--2257 (2020; Zbl 1448.35425) Full Text: DOI
Tang, Shanshan; Zhang, Xiaofei Subharmonic solutions and minimal periodic solutions of first-order variant subquadratic Hamiltonian systems. (English) Zbl 1448.37074 Topol. Methods Nonlinear Anal. 55, No. 2, 517-532 (2020). MSC: 37J46 53D12 58E05 PDF BibTeX XML Cite \textit{S. Tang} and \textit{X. Zhang}, Topol. Methods Nonlinear Anal. 55, No. 2, 517--532 (2020; Zbl 1448.37074) Full Text: DOI Euclid
Albers, Peter; Frauenfelder, Urs; Schlenk, Felix Hamiltonian delay equations – examples and a lower bound for the number of periodic solutions. (English) Zbl 07243320 Adv. Math. 373, Article ID 107319, 17 p. (2020). MSC: 34K13 53D40 58E05 37J46 PDF BibTeX XML Cite \textit{P. Albers} et al., Adv. Math. 373, Article ID 107319, 17 p. (2020; Zbl 07243320) Full Text: DOI
Saiedinezhad, Somayeh On the existence of three solutions for some classes of two-point semi-linear and quasi-linear differential equations. (English) Zbl 07243027 Bull. Iran. Math. Soc. 46, No. 5, 1243-1255 (2020). Reviewer: Erdogan Sen (Tekirdağ) MSC: 34B09 58E05 PDF BibTeX XML Cite \textit{S. Saiedinezhad}, Bull. Iran. Math. Soc. 46, No. 5, 1243--1255 (2020; Zbl 07243027) Full Text: DOI
Ambrosio, Vincenzo Fractional \(p \& q\) Laplacian problems in \(\mathbb{R}^N\) with critical growth. (English) Zbl 1446.35245 Z. Anal. Anwend. 39, No. 3, 289-314 (2020). MSC: 35R11 35A15 58E05 35B33 PDF BibTeX XML Cite \textit{V. Ambrosio}, Z. Anal. Anwend. 39, No. 3, 289--314 (2020; Zbl 1446.35245) Full Text: DOI
Wang, Fanjing; Zhang, Duanzhi Multiple brake orbits of even Hamiltonian systems on torus. (English) Zbl 1448.58010 Sci. China, Math. 63, No. 7, 1429-1440 (2020). MSC: 58E05 70H05 34C25 PDF BibTeX XML Cite \textit{F. Wang} and \textit{D. Zhang}, Sci. China, Math. 63, No. 7, 1429--1440 (2020; Zbl 1448.58010) Full Text: DOI
Shivanian, Elyas Existence of at least three distinct weak solutions for a class of nonlinear system of fractional differential equations. (English) Zbl 07241786 Numer. Funct. Anal. Optim. 41, No. 10, 1228-1245 (2020). MSC: 34A08 34B15 58E05 PDF BibTeX XML Cite \textit{E. Shivanian}, Numer. Funct. Anal. Optim. 41, No. 10, 1228--1245 (2020; Zbl 07241786) Full Text: DOI
Azroul, Elhoussine; Benkirane, Abdelmoujib; Srati, Mohammed Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev space. Nonlocal eigenvalue type problem. (English) Zbl 1445.35297 Adv. Oper. Theory 5, No. 4, 1599-1617 (2020). MSC: 35R11 46E30 58E05 35J61 35P30 PDF BibTeX XML Cite \textit{E. Azroul} et al., Adv. Oper. Theory 5, No. 4, 1599--1617 (2020; Zbl 1445.35297) Full Text: DOI
Azroul, Elhoussine; Benkirane, Abdelmoujib; Srati, Mohammed Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces. (English) Zbl 1445.35296 Adv. Oper. Theory 5, No. 4, 1350-1375 (2020). MSC: 35R11 46E30 58E05 35J60 35J15 PDF BibTeX XML Cite \textit{E. Azroul} et al., Adv. Oper. Theory 5, No. 4, 1350--1375 (2020; Zbl 1445.35296) Full Text: DOI
Dieci, Luca; Manetta, Manuela; Zhou, Haomin Double descent and intermittent color diffusion for landscape exploration. (English) Zbl 07235965 Numer. Algorithms 85, No. 1, 145-169 (2020). Reviewer: Nada Djuranović-Miličić (Beograd) MSC: 65K05 58E05 90C30 PDF BibTeX XML Cite \textit{L. Dieci} et al., Numer. Algorithms 85, No. 1, 145--169 (2020; Zbl 07235965) Full Text: DOI
Chen, Mengxi; Wang, Zhiyong Existence of periodic solutions for a class of damped vibration problems. (English) Zbl 1449.34116 Math. Appl. 33, No. 1, 84-90 (2020). MSC: 34C25 58E05 PDF BibTeX XML Cite \textit{M. Chen} and \textit{Z. Wang}, Math. Appl. 33, No. 1, 84--90 (2020; Zbl 1449.34116)
Wang, Qi; Liu, Chungen An index theory with applications to homoclinic orbits of Hamiltonian systems and Dirac equations. (English) Zbl 1446.49028 J. Dyn. Differ. Equations 32, No. 3, 1177-1201 (2020). Reviewer: Ernö Robert Csetnek (Wien) MSC: 49N15 58E05 47J30 47A75 37J51 35Q41 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{C. Liu}, J. Dyn. Differ. Equations 32, No. 3, 1177--1201 (2020; Zbl 1446.49028) Full Text: DOI
Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D. Superlinear perturbations of the eigenvalue problem for the Robin Laplacian plus an indefinite and unbounded potential. (English) Zbl 1444.35039 Result. Math. 75, No. 3, Paper No. 116, 22 p. (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J20 35J60 58E05 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Result. Math. 75, No. 3, Paper No. 116, 22 p. (2020; Zbl 1444.35039) Full Text: DOI
Shokooh, Saeid; Graef, John R. Existence and multiplicity results for non-homogeneous Neumann problems in Orlicz-Sobolev spaces. (English) Zbl 1447.35151 Rend. Circ. Mat. Palermo (2) 69, No. 2, 339-351 (2020). Reviewer: Giovanni Anello (Messina) MSC: 35J60 35J25 58E05 PDF BibTeX XML Cite \textit{S. Shokooh} and \textit{J. R. Graef}, Rend. Circ. Mat. Palermo (2) 69, No. 2, 339--351 (2020; Zbl 1447.35151) Full Text: DOI
Williams, Jonathan D. Existence of two-parameter crossings, with applications. (English) Zbl 07216277 Geom. Dedicata 207, 265-286 (2020). Reviewer: Dorin Andrica (Riyadh) MSC: 57R45 57K40 57R70 58E05 PDF BibTeX XML Cite \textit{J. D. Williams}, Geom. Dedicata 207, 265--286 (2020; Zbl 07216277) Full Text: DOI
Papageorgiou, N. S.; Vetro, C.; Vetro, F. \((p, 2)\)-equations resonant at any variational eigenvalue. (English) Zbl 1444.35042 Complex Var. Elliptic Equ. 65, No. 7, 1077-1103 (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J20 35J60 58E05 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Complex Var. Elliptic Equ. 65, No. 7, 1077--1103 (2020; Zbl 1444.35042) Full Text: DOI
El Khalil, Abdelouahed; El Moumni, Mostafa; Morchid Alaoui, Moulay Driss; Touzani, Abdelfattah \(p(x)\)-biharmonic operator involving the \(p(x)\)-Hardy inequality. (English) Zbl 1445.35276 Georgian Math. J. 27, No. 2, 233-247 (2020). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 35P30 58E05 35A15 35J35 35J60 47J10 PDF BibTeX XML Cite \textit{A. El Khalil} et al., Georgian Math. J. 27, No. 2, 233--247 (2020; Zbl 1445.35276) Full Text: DOI
Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D. Nonlinear, nonhomogeneous Robin problems with indefinite potential and general reaction. (English) Zbl 1441.35109 Appl. Math. Optim. 81, No. 3, 823-857 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J20 35J60 58E05 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Appl. Math. Optim. 81, No. 3, 823--857 (2020; Zbl 1441.35109) Full Text: DOI
Gamara, Najoua; Hafassa, Boutheina; Makni, Akrem \( \beta \)-flatness condition in CR spheres multiplicity results. (English) Zbl 1440.53029 Int. J. Math. 31, No. 3, Article ID 2050023, 20 p. (2020). MSC: 53C15 53C21 57R70 58E05 PDF BibTeX XML Cite \textit{N. Gamara} et al., Int. J. Math. 31, No. 3, Article ID 2050023, 20 p. (2020; Zbl 1440.53029) Full Text: DOI
Ambrosio, Vincenzo Multiplicity and concentration results for fractional Schrödinger-Poisson equations with magnetic fields and critical growth. (English) Zbl 1439.35027 Potential Anal. 52, No. 4, 565-600 (2020). MSC: 35B25 35A15 35R11 35S05 58E05 35B33 PDF BibTeX XML Cite \textit{V. Ambrosio}, Potential Anal. 52, No. 4, 565--600 (2020; Zbl 1439.35027) Full Text: DOI
Asselle, Luca; Schmäschke, Felix On geodesic flows with symmetries and closed magnetic geodesics on orbifolds. (English) Zbl 1443.37045 Ergodic Theory Dyn. Syst. 40, No. 6, 1480-1509 (2020). Reviewer: Andrew Bucki (Edmond) MSC: 37J39 37J11 37J46 37D40 53D20 53C35 58E05 PDF BibTeX XML Cite \textit{L. Asselle} and \textit{F. Schmäschke}, Ergodic Theory Dyn. Syst. 40, No. 6, 1480--1509 (2020; Zbl 1443.37045) Full Text: DOI
Corvellec, Jean-Noel On the homotopical stability of isolated critical points of continuous functions. (English) Zbl 1442.58012 J. Convex Anal. 27, No. 1, 277-284 (2020). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 58E05 PDF BibTeX XML Cite \textit{J.-N. Corvellec}, J. Convex Anal. 27, No. 1, 277--284 (2020; Zbl 1442.58012) Full Text: Link
Jin, Tiankun; Yang, Zhipeng The fractional Schrödinger-Poisson systems with infinitely many solutions. (English) Zbl 1437.35597 J. Korean Math. Soc. 57, No. 2, 489-506 (2020). MSC: 35Q40 35J50 58E05 26A33 35R11 PDF BibTeX XML Cite \textit{T. Jin} and \textit{Z. Yang}, J. Korean Math. Soc. 57, No. 2, 489--506 (2020; Zbl 1437.35597) Full Text: DOI
Papageorgiou, Nikolaos S.; Vetro, Calogero; Vetro, Francesca Multiple solutions with sign information for a class of coercive \((p, 2)\)-equations. (English) Zbl 1437.35359 Bull. Malays. Math. Sci. Soc. (2) 43, No. 3, 2343-2371 (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J62 35A15 58E05 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 3, 2343--2371 (2020; Zbl 1437.35359) Full Text: DOI
Feehan, Paul M. N. On the Morse-Bott property of analytic functions on Banach spaces with Łojasiewicz exponent one half. (English) Zbl 1444.32029 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 87, 50 p. (2020). Reviewer: Tadeusz Krasiński (Łódź) MSC: 32S05 14P15 58E05 PDF BibTeX XML Cite \textit{P. M. N. Feehan}, Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 87, 50 p. (2020; Zbl 1444.32029) Full Text: DOI
Motreanu, Dumitru; Sciammetta, Angela; Tornatore, Elisabetta A sub-supersolution approach for Neumann boundary value problems with gradient dependence. (English) Zbl 1437.35357 Nonlinear Anal., Real World Appl. 54, Article ID 103096, 12 p. (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J62 58E05 PDF BibTeX XML Cite \textit{D. Motreanu} et al., Nonlinear Anal., Real World Appl. 54, Article ID 103096, 12 p. (2020; Zbl 1437.35357) Full Text: DOI
Blagojević, Pavle V. M.; Harrison, Michael; Tabachnikov, Serge; Ziegler, Günter M. Counting periodic trajectories of Finsler billiards. (English) Zbl 07189248 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 022, 33 p. (2020). Reviewer: Thomas J. Bartsch (Gießen) MSC: 37C83 37J46 37C55 55R80 58E05 70H12 PDF BibTeX XML Cite \textit{P. V. M. Blagojević} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 022, 33 p. (2020; Zbl 07189248) Full Text: DOI
Ryabichev, Andrey Eliashberg’s \(h\)-principle and generic maps of surfaces with prescribed singular locus. (English) Zbl 1445.57024 Topology Appl. 276, Article ID 107168, 16 p. (2020). Reviewer: Dorin Andrica (Riyadh) MSC: 57R45 57R35 58E05 PDF BibTeX XML Cite \textit{A. Ryabichev}, Topology Appl. 276, Article ID 107168, 16 p. (2020; Zbl 1445.57024) Full Text: DOI
Papageorgiou, Nikolaos S.; Vetro, Calogero; Vetro, Francesca Multiple solutions with sign information for a \(( p, 2)\)-equation with combined nonlinearities. (English) Zbl 1436.35117 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111716, 25 p. (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J20 35J60 58E05 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111716, 25 p. (2020; Zbl 1436.35117) Full Text: DOI
Bokalo, Mykola; Buhrii, Oleh; Hryadil, Nikolyetta Initial-boundary value problems for nonlinear elliptic-parabolic equations with variable exponents of nonlinearity in unbounded domains without conditions at infinity. (English) Zbl 1436.35248 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111700, 17 p. (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35K65 35K55 35K70 58E05 PDF BibTeX XML Cite \textit{M. Bokalo} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111700, 17 p. (2020; Zbl 1436.35248) Full Text: DOI
Benci, Vieri; Nardulli, Stefano; Piccione, Paolo Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint. (English) Zbl 1437.35208 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 64, 30 p. (2020). MSC: 35J20 35A01 58E05 PDF BibTeX XML Cite \textit{V. Benci} et al., Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 64, 30 p. (2020; Zbl 1437.35208) Full Text: DOI
Rand, Ian; Scoville, Nicholas A. Discrete Morse functions, vector fields, and homological sequences on trees. (English) Zbl 1435.05242 Involve 13, No. 2, 219-229 (2020). MSC: 05E45 57M15 05C05 68R10 58E05 PDF BibTeX XML Cite \textit{I. Rand} and \textit{N. A. Scoville}, Involve 13, No. 2, 219--229 (2020; Zbl 1435.05242) Full Text: DOI
Ambrosio, Vincenzo Multiplicity and concentration results for a fractional Schrödinger-Poisson type equation with magnetic field. (English) Zbl 1437.35689 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 655-694 (2020). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 35R11 35A15 35S05 58E05 PDF BibTeX XML Cite \textit{V. Ambrosio}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 655--694 (2020; Zbl 1437.35689) Full Text: DOI
Wei, Sining; Wang, Yong Modified Novikov operators and the Kastler-Kalau-Walze-type theorem for manifolds with boundary. (English) Zbl 1436.53051 Adv. Math. Phys. 2020, Article ID 9090656, 28 p. (2020). MSC: 53C80 53C27 58E05 PDF BibTeX XML Cite \textit{S. Wei} and \textit{Y. Wang}, Adv. Math. Phys. 2020, Article ID 9090656, 28 p. (2020; Zbl 1436.53051) Full Text: DOI
Alves, Claudianor O.; de Lima, Romildo N.; Nóbrega, Alânnio B. Global bifurcation results for a fractional equation in \(\mathbb{R}^N\). (English) Zbl 1436.35310 J. Math. Anal. Appl. 487, No. 1, Article ID 123980, 21 p. (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35R11 58E05 PDF BibTeX XML Cite \textit{C. O. Alves} et al., J. Math. Anal. Appl. 487, No. 1, Article ID 123980, 21 p. (2020; Zbl 1436.35310) Full Text: DOI
Hung, Bui Quoc; Toan, Hoang Quoc On fractional \(p\)-Laplacian equations at resonance. (English) Zbl 1437.35407 Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1273-1288 (2020). MSC: 35J92 58E05 PDF BibTeX XML Cite \textit{B. Q. Hung} and \textit{H. Q. Toan}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1273--1288 (2020; Zbl 1437.35407) Full Text: DOI
Anapolitanos, Ioannis; Lewin, Mathieu Compactness of molecular reaction paths in quantum mechanics. (English) Zbl 07178289 Arch. Ration. Mech. Anal. 236, No. 2, 505-576 (2020). MSC: 35J 58E 58E05 35J20 PDF BibTeX XML Cite \textit{I. Anapolitanos} and \textit{M. Lewin}, Arch. Ration. Mech. Anal. 236, No. 2, 505--576 (2020; Zbl 07178289) Full Text: DOI
An, Yu-Cheng; Liu, Hairong The Schrödinger-Poisson type system involving a critical nonlinearity on the first Heisenberg group. (English) Zbl 1433.35442 Isr. J. Math. 235, No. 1, 385-411 (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35R03 35H20 35J50 22E30 35B33 35J57 58E05 35B32 PDF BibTeX XML Cite \textit{Y.-C. An} and \textit{H. Liu}, Isr. J. Math. 235, No. 1, 385--411 (2020; Zbl 1433.35442) Full Text: DOI
Leonardi, Salvatore; Papageorgiou, Nikolaos S. On a class of critical Robin problems. (English) Zbl 1437.35217 Forum Math. 32, No. 1, 95-109 (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J20 35J60 58E05 PDF BibTeX XML Cite \textit{S. Leonardi} and \textit{N. S. Papageorgiou}, Forum Math. 32, No. 1, 95--109 (2020; Zbl 1437.35217) Full Text: DOI
Papageorgiou, Nikolaos S.; Vetro, Calogero; Vetro, Francesca Superlinear Robin problems with indefinite linear part. (English) Zbl 1431.35026 Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 537-562 (2020). MSC: 35J20 35J60 58E05 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 537--562 (2020; Zbl 1431.35026) Full Text: DOI
Ambrosio, Vincenzo; Figueiredo, Giovany M.; Isernia, Teresa Existence and concentration of positive solutions for \(p\)-fractional Schrödinger equations. (English) Zbl 1431.35222 Ann. Mat. Pura Appl. (4) 199, No. 1, 317-344 (2020). MSC: 35R11 35J60 35A15 58E05 PDF BibTeX XML Cite \textit{V. Ambrosio} et al., Ann. Mat. Pura Appl. (4) 199, No. 1, 317--344 (2020; Zbl 1431.35222) Full Text: DOI
Kang, Xiaosong; Xu, Xu; Zhang, Dunmu The Morse criticality revisited and some new applications to the Morse-Sard theorem. (English) Zbl 1433.58014 Manuscr. Math. 161, No. 3-4, 467-485 (2020). MSC: 58E05 58C25 46T20 58K40 58K65 PDF BibTeX XML Cite \textit{X. Kang} et al., Manuscr. Math. 161, No. 3--4, 467--485 (2020; Zbl 1433.58014) Full Text: DOI
Ambrosio, Vincenzo Multiplicity and concentration results for a class of critical fractional Schrödinger-Poisson systems via penalization method. (English) Zbl 1434.35270 Commun. Contemp. Math. 22, No. 1, Article ID 1850078, 45 p. (2020). Reviewer: Zhipeng Yang (Göttingen) MSC: 35R11 35A15 47G20 58E05 PDF BibTeX XML Cite \textit{V. Ambrosio}, Commun. Contemp. Math. 22, No. 1, Article ID 1850078, 45 p. (2020; Zbl 1434.35270) Full Text: DOI
Arcoya, David; Bereanu, Cristian; Torres, Pedro J. Lusternik-Schnirelman theory for the action integral of the Lorentz force equation. (English) Zbl 1434.78006 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 50, 32 p. (2020). MSC: 78A35 58E05 83A05 PDF BibTeX XML Cite \textit{D. Arcoya} et al., Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 50, 32 p. (2020; Zbl 1434.78006) Full Text: DOI
Shokooh, Saeid Variational analysis to fourth-order impulsive differential equations. (English) Zbl 1431.35005 Bol. Soc. Parana. Mat. (3) 38, No. 1, 151-163 (2020). MSC: 35B38 34B15 58E05 PDF BibTeX XML Cite \textit{S. Shokooh}, Bol. Soc. Parana. Mat. (3) 38, No. 1, 151--163 (2020; Zbl 1431.35005) Full Text: Link
Kravvaritis, Dimitrios C.; Yannacopoulos, Athanasios N. Variational methods in nonlinear analysis. With applications in optimization and partial differential equations. (English) Zbl 1443.49001 De Gruyter Graduate. Berlin: De Gruyter (ISBN 978-3-11-064736-5/pbk; 978-3-11-064738-9/ebook). xxv, 474 p. (2020). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 49-02 47-02 35J20 35J25 35J50 35J57 46A55 47H04 47H05 47H09 47H10 47J20 47J25 47J30 49J35 49J40 49J50 49J52 49J53 49K20 49K35 49N15 49N60 58C30 58E05 58E30 58E35 58J05 58J32 90C25 PDF BibTeX XML Cite \textit{D. C. Kravvaritis} and \textit{A. N. Yannacopoulos}, Variational methods in nonlinear analysis. With applications in optimization and partial differential equations. Berlin: De Gruyter (2020; Zbl 1443.49001) Full Text: DOI
Liu, Hui; Wang, Chongzhi; Zhang, Duanzhi Elliptic and non-hyperbolic closed characteristics on compact convex P-cyclic symmetric hypersurfaces in \(\mathbb{R}^{2n} \). (English) Zbl 1431.58007 Calc. Var. Partial Differ. Equ. 59, No. 1, Paper No. 24, 20 p. (2020). MSC: 58E05 34C25 52A20 PDF BibTeX XML Cite \textit{H. Liu} et al., Calc. Var. Partial Differ. Equ. 59, No. 1, Paper No. 24, 20 p. (2020; Zbl 1431.58007) Full Text: DOI
Kamiyama, Yasuhiko The Euler characteristic of the regular spherical polygon spaces. (English) Zbl 1436.55024 Homology Homotopy Appl. 22, No. 1, 1-10 (2020). Reviewer: Daciberg Lima Gonçalves (São Paulo) MSC: 55R80 58D29 58E05 PDF BibTeX XML Cite \textit{Y. Kamiyama}, Homology Homotopy Appl. 22, No. 1, 1--10 (2020; Zbl 1436.55024) Full Text: DOI arXiv
Chtioui, Hichem; Hajaiej, Hichem; Soula, Marwa The scalar curvature problem on four-dimensional manifolds. (English) Zbl 1439.35168 Commun. Pure Appl. Anal. 19, No. 2, 723-746 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J60 58E05 PDF BibTeX XML Cite \textit{H. Chtioui} et al., Commun. Pure Appl. Anal. 19, No. 2, 723--746 (2020; Zbl 1439.35168) Full Text: DOI
El Khalil, Abdelouahed; Laghzal, Mohamed; Alaoui, My Driss Morchid; Touzani, Abdelfattah Eigenvalues for a class of singular problems involving \(p(x)\)-biharmonic operator and \(q(x)\)-Hardy potential. (English) Zbl 1429.35166 Adv. Nonlinear Anal. 9, 1130-1144 (2020). MSC: 35P30 35J40 35J35 35J62 35J75 47J10 58E05 PDF BibTeX XML Cite \textit{A. El Khalil} et al., Adv. Nonlinear Anal. 9, 1130--1144 (2020; Zbl 1429.35166) Full Text: DOI
Ambrosio, Vincenzo A local mountain pass approach for a class of fractional NLS equations with magnetic fields. (English) Zbl 07144678 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111622, 14 p. (2020). MSC: 47G20 35R11 35A15 58E05 PDF BibTeX XML Cite \textit{V. Ambrosio}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111622, 14 p. (2020; Zbl 07144678) Full Text: DOI
Chen, Yu; Ding, Yanheng; Xu, Tian Potential well and multiplicity of solutions for nonlinear Dirac equations. (English) Zbl 1428.35420 Commun. Pure Appl. Anal. 19, No. 1, 587-607 (2020). MSC: 35Q40 49J35 35A15 58E05 PDF BibTeX XML Cite \textit{Y. Chen} et al., Commun. Pure Appl. Anal. 19, No. 1, 587--607 (2020; Zbl 1428.35420) Full Text: DOI
Ben Ayed, Mohamed Finite-dimensional reduction of a supercritical exponent equation. (English) Zbl 1428.35133 Tunis. J. Math. 2, No. 2, 379-397 (2020). MSC: 35J91 35J67 58E05 PDF BibTeX XML Cite \textit{M. Ben Ayed}, Tunis. J. Math. 2, No. 2, 379--397 (2020; Zbl 1428.35133) Full Text: DOI
Papageorgiou, Nikolaos S.; Scapellato, Andrea Constant sign and nodal solutions for parametric \((p, 2)\)-equations. (English) Zbl 1426.35108 Adv. Nonlinear Anal. 9, 449-478 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J20 35J60 58E05 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} and \textit{A. Scapellato}, Adv. Nonlinear Anal. 9, 449--478 (2020; Zbl 1426.35108) Full Text: DOI
Papageorgiou, Nikolaos S.; Zhang, Chao Noncoercive resonant \((p,2)\)-equations with concave terms. (English) Zbl 1426.35109 Adv. Nonlinear Anal. 9, 228-249 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J20 35J60 58E05 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} and \textit{C. Zhang}, Adv. Nonlinear Anal. 9, 228--249 (2020; Zbl 1426.35109) Full Text: DOI
Katz, Gabriel Morse theory, gradient flows, concavity and complexity on manifolds with boundary. (English) Zbl 1432.58002 Hackensack, NJ: World Scientific (ISBN 978-981-4368-75-9/hbk; 978-981-4719-68-1/ebook). xvi, 497 p. (2020). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 58-02 58E05 58C25 57R70 53C23 58K45 PDF BibTeX XML Cite \textit{G. Katz}, Morse theory, gradient flows, concavity and complexity on manifolds with boundary. Hackensack, NJ: World Scientific (2020; Zbl 1432.58002) Full Text: DOI
Shokooh, Saeid; Li, Lin Non-trivial solutions for impulsive Sturm-Liouville boundary value problems. (English) Zbl 07273989 J. Adv. Math. Stud. 12, No. 1, 30-39 (2019). Reviewer: Snezhana Hristova (Plovdiv) MSC: 34B15 34B37 34B24 58E05 PDF BibTeX XML Cite \textit{S. Shokooh} and \textit{L. Li}, J. Adv. Math. Stud. 12, No. 1, 30--39 (2019; Zbl 07273989)
Feshchenko, Bohdan Deformations of smooth functions on 2-torus. (English) Zbl 1445.58004 Proc. Int. Geom. Cent. 12, No. 3, 30-50 (2019). MSC: 58E05 57S25 PDF BibTeX XML Cite \textit{B. Feshchenko}, Proc. Int. Geom. Cent. 12, No. 3, 30--50 (2019; Zbl 1445.58004) Full Text: DOI
Zhang, Shengui Periodic solutions for a class of Kirchhoff-type differential systems. (Chinese. English summary) Zbl 1449.34124 J. Shandong Univ., Nat. Sci. 54, No. 10, 1-6 (2019). MSC: 34C25 58E05 PDF BibTeX XML Cite \textit{S. Zhang}, J. Shandong Univ., Nat. Sci. 54, No. 10, 1--6 (2019; Zbl 1449.34124) Full Text: DOI
Boutry, Nicolas; Géraud, Thierry; Najman, Laurent An equivalence relation between morphological dynamics and persistent homology in 1D. (English) Zbl 1445.68244 Burgeth, Bernhard (ed.) et al., Mathematical morphology and its applications to signal and image processing. 14th international symposium, ISMM 2019, Saarbrücken, Germany, July 8–10, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11564, 57-68 (2019). MSC: 68U05 55N31 58E05 68U10 PDF BibTeX XML Cite \textit{N. Boutry} et al., Lect. Notes Comput. Sci. 11564, 57--68 (2019; Zbl 1445.68244) Full Text: DOI
Papageorgiou, Nikolaos S.; Vetro, Calogero; Vetro, Francesca Nonlinear nonhomogeneous elliptic problems. (English) Zbl 1444.35075 Dutta, Hemen (ed.) et al., Current trends in mathematical analysis and its interdisciplinary applications. Cham: Birkhäuser. 647-713 (2019). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J62 58E05 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., in: Current trends in mathematical analysis and its interdisciplinary applications. Cham: Birkhäuser. 647--713 (2019; Zbl 1444.35075) Full Text: DOI
Goel, Divya The effect of topology on the number of positive solutions of elliptic equation involving Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1441.49008 Topol. Methods Nonlinear Anal. 54, No. 2A, 751-771 (2019). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 49J35 35A15 35B09 35J60 58E05 PDF BibTeX XML Cite \textit{D. Goel}, Topol. Methods Nonlinear Anal. 54, No. 2A, 751--771 (2019; Zbl 1441.49008) Full Text: DOI Euclid
Binlin, Zhang; Rădulescu, Vicenţiu D.; Wang, Li Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian. (English) Zbl 1442.35501 Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 4, 1061-1081 (2019). MSC: 35R11 35A15 35J60 49J10 58E05 PDF BibTeX XML Cite \textit{Z. Binlin} et al., Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 4, 1061--1081 (2019; Zbl 1442.35501) Full Text: DOI
Mayer, Martin Prescribing scalar curvatures: non compactness versus critical points at infinity. (English) Zbl 1439.58007 Geom. Flows 4, 51-82 (2019). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 58E05 35B33 35R01 53E20 PDF BibTeX XML Cite \textit{M. Mayer}, Geom. Flows 4, 51--82 (2019; Zbl 1439.58007) Full Text: DOI
Calegari, Danny Sturm und train. (English) Zbl 1432.37088 Notices Am. Math. Soc. 66, No. 9, 1487-1489 (2019). MSC: 37J46 37J11 53D40 53D25 58E05 PDF BibTeX XML Cite \textit{D. Calegari}, Notices Am. Math. Soc. 66, No. 9, 1487--1489 (2019; Zbl 1432.37088) Full Text: DOI
Liu, Jian; Zhao, Zengqin; Yu, Wenguang The existence of triple classical solutions to impulsive problems with small non-autonomous perturbations. (Chinese. English summary) Zbl 1449.34100 Acta Math. Sin., Chin. Ser. 62, No. 3, 441-448 (2019). MSC: 34B37 34B40 58E05 34E10 37C60 PDF BibTeX XML Cite \textit{J. Liu} et al., Acta Math. Sin., Chin. Ser. 62, No. 3, 441--448 (2019; Zbl 1449.34100)
Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D. Parametric nonlinear resonant Robin problems. (English) Zbl 1439.35151 Math. Nachr. 292, No. 11, 2456-2480 (2019). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J20 35J60 58E05 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Math. Nachr. 292, No. 11, 2456--2480 (2019; Zbl 1439.35151) Full Text: DOI
Liang, Sihua; Zhang, Binlin Fractional \(p\)-Kirchhoff problems involving critical exponents and sign-changing weight functions. (English) Zbl 07149950 Asymptotic Anal. 115, No. 1-2, 47-61 (2019). MSC: 35R11 35B33 58E05 PDF BibTeX XML Cite \textit{S. Liang} and \textit{B. Zhang}, Asymptotic Anal. 115, No. 1--2, 47--61 (2019; Zbl 07149950) Full Text: DOI
Benhassine, Abderrazek Ground state solutions for a class of fractional Hamiltonian systems. (English) Zbl 1435.37078 Ric. Mat. 68, No. 2, 727-743 (2019). MSC: 37J12 34A08 26A33 58E05 PDF BibTeX XML Cite \textit{A. Benhassine}, Ric. Mat. 68, No. 2, 727--743 (2019; Zbl 1435.37078) Full Text: DOI
Graef, John R.; Kong, Lingju; Liu, Xueyan Multiple anti-periodic solutions to a discrete fourth order nonlinear equation. (English) Zbl 1428.39019 Differ. Equ. Dyn. Syst. 27, No. 4, 601-610 (2019). MSC: 39A23 39A10 39A27 58E05 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Differ. Equ. Dyn. Syst. 27, No. 4, 601--610 (2019; Zbl 1428.39019) Full Text: DOI
Cingolani, Silvia; Tanaka, Kazunaga Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well. (English) Zbl 1431.35169 Rev. Mat. Iberoam. 35, No. 6, 1885-1924 (2019). MSC: 35Q55 35Q40 35J20 58E05 35B09 35A01 35A15 PDF BibTeX XML Cite \textit{S. Cingolani} and \textit{K. Tanaka}, Rev. Mat. Iberoam. 35, No. 6, 1885--1924 (2019; Zbl 1431.35169) Full Text: DOI arXiv
Afrouzi, Ghasem A.; Shokooh, Shaeid; Chung, Nguyen T. Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz-Sobolev spaces. (English) Zbl 07144900 Commentat. Math. Univ. Carol. 60, No. 3, 361-378 (2019). MSC: 35D30 35J60 35J20 46N20 58E05 PDF BibTeX XML Cite \textit{G. A. Afrouzi} et al., Commentat. Math. Univ. Carol. 60, No. 3, 361--378 (2019; Zbl 07144900) Full Text: DOI
Thom, René Mathematical works. Volume II. (Œuvres mathématiques. Volume II.) (French, English) Zbl 07143879 Documents Mathématiques 17. Paris: Société Mathématique de France (SMF) (ISBN 978-2-85629-888-6/hbk). ix, 630 p. (2019). MSC: 01A75 57-03 58E05 55R25 57R75 55S15 57R45 58A20 57R42 01A70 PDF BibTeX XML Cite \textit{R. Thom}, Œuvres mathématiques. Volume II. Paris: Société Mathématique de France (SMF) (2019; Zbl 07143879)
Liu, Sai; Wang, Wei \( \omega^+\)-type index of \(\mathrm{GL}^+(2)\)-paths. (English) Zbl 1430.58008 Adv. Nonlinear Stud. 19, No. 4, 771-778 (2019). MSC: 58E05 34A30 34C25 PDF BibTeX XML Cite \textit{S. Liu} and \textit{W. Wang}, Adv. Nonlinear Stud. 19, No. 4, 771--778 (2019; Zbl 1430.58008) Full Text: DOI
Heidarkhani, Shapour; Graef, John R.; Kong, Lingju; Salari, Amjad Three weak solutions to a degenerate quasilinear elliptic system. (English) Zbl 1427.35052 Matematiche 74, No. 1, 191-210 (2019). MSC: 35J60 35P30 35D30 35J92 35J75 34B10 58E05 PDF BibTeX XML Cite \textit{S. Heidarkhani} et al., Matematiche 74, No. 1, 191--210 (2019; Zbl 1427.35052) Full Text: DOI
Acinas, S.; Maksymiuk, J.; Mazzone, F. Clarke duality for Hamiltonian systems with nonstandard growth. (English) Zbl 1428.37060 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 1-21 (2019). MSC: 37J46 46E30 58E05 PDF BibTeX XML Cite \textit{S. Acinas} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 1--21 (2019; Zbl 1428.37060) Full Text: DOI
Scoville, Nicholas A. Discrete Morse theory. (English) Zbl 1433.58002 Student Mathematical Library 90. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5298-8/pbk; 978-1-4704-5379-4/ebook). xiv, 273 p. (2019). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 58-01 58E05 55-01 55U05 55U10 57Q05 57Q10 PDF BibTeX XML Cite \textit{N. A. Scoville}, Discrete Morse theory. Providence, RI: American Mathematical Society (AMS) (2019; Zbl 1433.58002) Full Text: DOI
Jeanjean, Louis; Lu, Sheng-Sen Nonradial normalized solutions for nonlinear scalar field equations. (English) Zbl 1429.35101 Nonlinearity 32, No. 12, 4942-4966 (2019). MSC: 35J91 58E05 PDF BibTeX XML Cite \textit{L. Jeanjean} and \textit{S.-S. Lu}, Nonlinearity 32, No. 12, 4942--4966 (2019; Zbl 1429.35101) Full Text: DOI
Beliaev, Dmitry; Cammarota, Valentina; Wigman, Igor Two point function for critical points of a random plane wave. (English) Zbl 1429.58038 Int. Math. Res. Not. 2019, No. 9, 2661-2689 (2019). Reviewer: Ramdin Mawia (Kolkata) MSC: 58J50 58E05 58E20 PDF BibTeX XML Cite \textit{D. Beliaev} et al., Int. Math. Res. Not. 2019, No. 9, 2661--2689 (2019; Zbl 1429.58038) Full Text: DOI arXiv
Rădulescu, Vicenţiu D. Isotropic and anisotropic double-phase problems: old and new. (English) Zbl 1437.35315 Opusc. Math. 39, No. 2, 259-279 (2019). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J60 35J65 58E05 PDF BibTeX XML Cite \textit{V. D. Rădulescu}, Opusc. Math. 39, No. 2, 259--279 (2019; Zbl 1437.35315) Full Text: DOI
Uţă, Vasile-Florin Existence theorems for degenerate Schrödinger equations involving a singular potential and an indefinite sign perturbation. (English) Zbl 1438.35155 An. Univ. Craiova, Ser. Mat. Inf. 46, No. 1, 203-217 (2019). MSC: 35J60 35B20 35B33 58E05 PDF BibTeX XML Cite \textit{V.-F. Uţă}, An. Univ. Craiova, Ser. Mat. Inf. 46, No. 1, 203--217 (2019; Zbl 1438.35155)