Davidov, Johann; Shakoor, Kamran Almost Hermitian structures defining harmonic maps of the unit tangent bundle. (English) Zbl 07299627 J. Geom. Phys. 160, Article ID 103988, 15 p. (2021). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{J. Davidov} and \textit{K. Shakoor}, J. Geom. Phys. 160, Article ID 103988, 15 p. (2021; Zbl 07299627) Full Text: DOI
Guan, Zhida; Li, Haizhong; Vrancken, Luc Four dimensional biharmonic hypersurfaces in nonzero space forms have constant mean curvature. (English) Zbl 07299625 J. Geom. Phys. 160, Article ID 103984, 16 p. (2021). MSC: 53C40 58E20 53C42 PDF BibTeX XML Cite \textit{Z. Guan} et al., J. Geom. Phys. 160, Article ID 103984, 16 p. (2021; Zbl 07299625) Full Text: DOI
Ghandour, Elsa; Gudmundsson, Sigmundur; Turner, Thomas B. Conformal foliations on Lie groups and complex-valued harmonic morphisms. (English) Zbl 07299389 J. Geom. Phys. 159, Article ID 103940, 12 p. (2021). MSC: 31B30 53C43 58E20 PDF BibTeX XML Cite \textit{E. Ghandour} et al., J. Geom. Phys. 159, Article ID 103940, 12 p. (2021; Zbl 07299389) Full Text: DOI
Chen, Min Stationary maps into the sphere omitting a totally geodesic subsphere of codimension two. (English) Zbl 07299127 Proc. Am. Math. Soc. 149, No. 2, 889-896 (2021). MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{M. Chen}, Proc. Am. Math. Soc. 149, No. 2, 889--896 (2021; Zbl 07299127) Full Text: DOI
Branding, Volker A structure theorem for polyharmonic maps between Riemannian manifolds. (English) Zbl 07289091 J. Differ. Equations 273, 14-39 (2021). MSC: 58E20 53C43 31B30 35J48 35J91 PDF BibTeX XML Cite \textit{V. Branding}, J. Differ. Equations 273, 14--39 (2021; Zbl 07289091) Full Text: DOI
Kortum, Joshua Concentration-cancellation in the Ericksen-Leslie model. (English) Zbl 07294610 Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 189, 15 p. (2020). MSC: 35Q35 35Q56 35D30 35K55 76A15 58E20 PDF BibTeX XML Cite \textit{J. Kortum}, Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 189, 15 p. (2020; Zbl 07294610) Full Text: DOI
Stern, Daniel \(p\)-harmonic maps to \(S^1\) and stationary varifolds of codimension two. (English) Zbl 07294608 Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 187, 46 p. (2020). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{D. Stern}, Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 187, 46 p. (2020; Zbl 07294608) Full Text: DOI
Pigati, Alessandro; Rivière, Tristan A proof of the multiplicity 1 conjecture for min-max minimal surfaces in arbitrary codimension. (English) Zbl 07292301 Duke Math. J. 169, No. 11, 2005-2044 (2020). MSC: 49Q05 49Q15 49Q20 58E20 53C42 PDF BibTeX XML Cite \textit{A. Pigati} and \textit{T. Rivière}, Duke Math. J. 169, No. 11, 2005--2044 (2020; Zbl 07292301) Full Text: DOI Euclid
Remli, Embarka; Cherif, Ahmed Mohammed Some results on f-harmonic maps and f-biharmonic submanifolds. (English) Zbl 07289728 Acta Math. Univ. Comen., New Ser. 89, No. 2, 299-307 (2020). MSC: 53C43 58E20 53A30 PDF BibTeX XML Cite \textit{E. Remli} and \textit{A. M. Cherif}, Acta Math. Univ. Comen., New Ser. 89, No. 2, 299--307 (2020; Zbl 07289728)
Robertson, Craig; Rupflin, Melanie Finite-time degeneration for variants of Teichmüller harmonic map flow. (English) Zbl 07288967 J. Lond. Math. Soc., II. Ser. 102, No. 2, 535-556 (2020). MSC: 53A10 53C43 53E99 58E20 30F99 PDF BibTeX XML Cite \textit{C. Robertson} and \textit{M. Rupflin}, J. Lond. Math. Soc., II. Ser. 102, No. 2, 535--556 (2020; Zbl 07288967) Full Text: DOI
Dorfmeister, Josef; Wang, Peng Classification of homogeneous Willmore surfaces in \(S^n\). (English) Zbl 07285612 Osaka J. Math. 57, No. 4, 805-817 (2020). MSC: 53C43 53A31 53C35 58E20 PDF BibTeX XML Cite \textit{J. Dorfmeister} and \textit{P. Wang}, Osaka J. Math. 57, No. 4, 805--817 (2020; Zbl 07285612) Full Text: Euclid
Gudmundsson, Sigmundur; Sobak, Marko \(r\)-harmonic and complex isoparametric functions on the Lie groups \(\mathbb{R}^m\ltimes\mathbb{R}^n\) and \(\mathbb{R}^m\times\text{H}^{2n+1}\). (English) Zbl 07276376 Ann. Global Anal. Geom. 58, No. 4, 477-496 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 31B30 53C43 58E20 PDF BibTeX XML Cite \textit{S. Gudmundsson} and \textit{M. Sobak}, Ann. Global Anal. Geom. 58, No. 4, 477--496 (2020; Zbl 07276376) Full Text: DOI
Sommer, Stefan; Fletcher, Tom; Pennec, Xavier Introduction to differential and Riemannian geometry. (English) Zbl 07274038 Pennec, Xavier (ed.) et al., Riemannian geometric statistics in medical image analysis. Amsterdam: Elsevier/Academic Press (ISBN 978-0-12-814725-2/pbk; 978-0-12-814726-9/ebook). The Elsevier and Miccai Society Book Series, 3-37 (2020). Reviewer: Ludwig Paditz (Dresden) MSC: 53-01 53Axx 53-02 53Bxx 53B20 53B21 53C05 53C20 53C21 53C22 53C25 53C56 58-01 58E20 PDF BibTeX XML Cite \textit{S. Sommer} et al., in: Riemannian geometric statistics in medical image analysis. Amsterdam: Elsevier/Academic Press. 3--37 (2020; Zbl 07274038) Full Text: DOI
Mazowiecka, Katarzyna; Rodiac, Rémy; Schikorra, Armin Epsilon-regularity for \(p\)-harmonic maps at a free boundary on a sphere. (English) Zbl 07271831 Anal. PDE 13, No. 5, 1301-1331 (2020). MSC: 58E20 35B65 35R35 35J58 35J66 PDF BibTeX XML Cite \textit{K. Mazowiecka} et al., Anal. PDE 13, No. 5, 1301--1331 (2020; Zbl 07271831) Full Text: DOI
Gabdurakhmanov, Ravil Spaces of harmonic maps of the projective plane to the four-dimensional sphere. (English) Zbl 07271422 J. Geom. 111, No. 3, Paper No. 40, 23 p. (2020). MSC: 58E20 53C28 53C43 PDF BibTeX XML Cite \textit{R. Gabdurakhmanov}, J. Geom. 111, No. 3, Paper No. 40, 23 p. (2020; Zbl 07271422) Full Text: DOI
Breiner, Christine; Fraser, Ailana; Huang, Lan-Hsuan; Mese, Chikako; Sargent, Pam; Zhang, Yingying Existence of harmonic maps into CAT(1) spaces. (English) Zbl 07268914 Commun. Anal. Geom. 28, No. 4, 781-835 (2020). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{C. Breiner} et al., Commun. Anal. Geom. 28, No. 4, 781--835 (2020; Zbl 07268914) Full Text: DOI
Oliver, J. The index of harmonic maps from surfaces to complex projective spaces. (English) Zbl 07268553 Int. J. Math. 31, No. 9, Article ID 2050069, 13 p. (2020). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{J. Oliver}, Int. J. Math. 31, No. 9, Article ID 2050069, 13 p. (2020; Zbl 07268553) Full Text: DOI
Lytchak, Alexander; Stadler, Stephan Improvements of upper curvature bounds. (English) Zbl 07254276 Trans. Am. Math. Soc. 373, No. 10, 7153-7166 (2020). Reviewer: Stig-Olof Londen (Aalto) MSC: 53C20 53C23 58E20 PDF BibTeX XML Cite \textit{A. Lytchak} and \textit{S. Stadler}, Trans. Am. Math. Soc. 373, No. 10, 7153--7166 (2020; Zbl 07254276) Full Text: DOI
Ou, Ye-Lin A note on equivariant biharmonic maps and stable biharmonic maps. (English) Zbl 1450.58008 J. Math. Anal. Appl. 491, No. 1, Article ID 124301, 10 p. (2020). Reviewer: Gabjin Yun (Yongin) MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{Y.-L. Ou}, J. Math. Anal. Appl. 491, No. 1, Article ID 124301, 10 p. (2020; Zbl 1450.58008) Full Text: DOI
Feehan, Paul M. N.; Maridakis, Manousos Łojasiewicz-Simon gradient inequalities for analytic and Morse-Bott functions on Banach spaces. (English) Zbl 1447.58018 J. Reine Angew. Math. 765, 35-67 (2020). MSC: 58E15 32H02 46B25 58E20 PDF BibTeX XML Cite \textit{P. M. N. Feehan} and \textit{M. Maridakis}, J. Reine Angew. Math. 765, 35--67 (2020; Zbl 1447.58018) Full Text: DOI
Zhang, Li; Huo, Sheng Jin; Guo, Hui; Feng, Xiao Gao Mapping of least \(\rho \)-Dirichlet energy between doubly connected Riemann surfaces. (English) Zbl 1447.58021 Acta Math. Sin., Engl. Ser. 36, No. 6, 663-672 (2020). MSC: 58E20 30A05 PDF BibTeX XML Cite \textit{L. Zhang} et al., Acta Math. Sin., Engl. Ser. 36, No. 6, 663--672 (2020; Zbl 1447.58021) Full Text: DOI
Branding, Volker Some analytic results on interpolating sesqui-harmonic maps. (English) Zbl 07243398 Ann. Mat. Pura Appl. (4) 199, No. 5, 2039-2059 (2020). Reviewer: Ye-Lin Ou (Commerce) MSC: 58E20 31B30 35B65 PDF BibTeX XML Cite \textit{V. Branding}, Ann. Mat. Pura Appl. (4) 199, No. 5, 2039--2059 (2020; Zbl 07243398) Full Text: DOI
Koskela, Pekka; Koski, Aleksis; Onninen, Jani Sobolev homeomorphic extensions onto John domains. (English) Zbl 07242604 J. Funct. Anal. 279, No. 10, Article ID 108719, 17 p. (2020). MSC: 46E35 26B10 58E20 PDF BibTeX XML Cite \textit{P. Koskela} et al., J. Funct. Anal. 279, No. 10, Article ID 108719, 17 p. (2020; Zbl 07242604) Full Text: DOI
Jaracz, Jaroslaw S. The Penrose inequality and positive mass theorem with charge for manifolds with asymptotically cylindrical ends. (English) Zbl 1447.53059 Ann. Henri Poincaré 21, No. 8, 2581-2609 (2020). MSC: 53C50 83C22 58E20 58J99 PDF BibTeX XML Cite \textit{J. S. Jaracz}, Ann. Henri Poincaré 21, No. 8, 2581--2609 (2020; Zbl 1447.53059) Full Text: DOI
Yeung, Sai-Kee Erratum to: “Foliations associated to harmonic maps on some complex two ball quotients”. (English) Zbl 1443.58012 Sci. China, Math. 63, No. 8, 1645 (2020). MSC: 58E20 53C22 53C24 PDF BibTeX XML Cite \textit{S.-K. Yeung}, Sci. China, Math. 63, No. 8, 1645 (2020; Zbl 1443.58012) Full Text: DOI
Breiner, Christine; Lakzian, Sajjad Bubble tree convergence for harmonic maps into compact locally CAT(1) spaces. (English) Zbl 1446.53050 Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 144, 23 p. (2020). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{C. Breiner} and \textit{S. Lakzian}, Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 144, 23 p. (2020; Zbl 1446.53050) Full Text: DOI
Ai, Wanjun; Zhu, Miaomiao Regularity for Dirac-harmonic maps into certain pseudo-Riemannian manifolds. (English) Zbl 1450.58005 J. Funct. Anal. 279, No. 7, Article ID 108633, 27 p. (2020). Reviewer: Gabjin Yun (Yongin) MSC: 58E20 53C27 53C50 35J60 35B65 PDF BibTeX XML Cite \textit{W. Ai} and \textit{M. Zhu}, J. Funct. Anal. 279, No. 7, Article ID 108633, 27 p. (2020; Zbl 1450.58005) Full Text: DOI
Perktaş, Selcen Y.; Acet, Bilal E.; Blaga, Adara M. A short note on \(f\)-biharmonic hypersurfaces. (English) Zbl 07217163 Commentat. Math. Univ. Carol. 61, No. 1, 119-126 (2020). Reviewer: Ye-Lin Ou (Commerce) MSC: 58E20 53C25 53C43 PDF BibTeX XML Cite \textit{S. Y. Perktaş} et al., Commentat. Math. Univ. Carol. 61, No. 1, 119--126 (2020; Zbl 07217163) Full Text: DOI
Li, Yuqiao The positive mass theorem for non-spin manifolds with distributional curvature. (English) Zbl 1447.53079 Ann. Henri Poincaré 21, No. 6, 2093-2114 (2020). Reviewer: Miguel Paternain (Montevideo) MSC: 53E20 83C99 53C20 58E20 58J99 PDF BibTeX XML Cite \textit{Y. Li}, Ann. Henri Poincaré 21, No. 6, 2093--2114 (2020; Zbl 1447.53079) Full Text: DOI
Struwe, Michael Normalized harmonic map heat flow. (English) Zbl 1445.58008 Commun. Pure Appl. Math. 73, No. 3, 664-686 (2020). Reviewer: Adnane Elmrabty (Guelmim) MSC: 58E20 PDF BibTeX XML Cite \textit{M. Struwe}, Commun. Pure Appl. Math. 73, No. 3, 664--686 (2020; Zbl 1445.58008) Full Text: DOI
Grama, Lino; Seco, Lucas Second homotopy group and invariant geometry of flag manifolds. (English) Zbl 1448.58014 Result. Math. 75, No. 3, Paper No. 94, 21 p. (2020). MSC: 58E20 53C22 53C30 14M15 22E46 17B20 PDF BibTeX XML Cite \textit{L. Grama} and \textit{L. Seco}, Result. Math. 75, No. 3, Paper No. 94, 21 p. (2020; Zbl 1448.58014) Full Text: DOI
Maeta, Shun; Ou, Ye-Lin Some classifications of biharmonic hypersurfaces with constant scalar curvature. (English) Zbl 1447.58019 Pac. J. Math. 306, No. 1, 281-290 (2020). Reviewer: Vladimir Yu. Rovenskij (Nesher) MSC: 58E20 53C12 PDF BibTeX XML Cite \textit{S. Maeta} and \textit{Y.-L. Ou}, Pac. J. Math. 306, No. 1, 281--290 (2020; Zbl 1447.58019) Full Text: DOI
Branding, V.; Montaldo, S.; Oniciuc, C.; Ratto, A. Higher order energy functionals. (English) Zbl 1441.58013 Adv. Math. 370, Article ID 107236, 59 p. (2020). MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{V. Branding} et al., Adv. Math. 370, Article ID 107236, 59 p. (2020; Zbl 1441.58013) Full Text: DOI
Lytchak, Alexander; Wenger, Stefan Canonical parameterizations of metric disks. (English) Zbl 07198465 Duke Math. J. 169, No. 4, 761-797 (2020). Reviewer: Thomas Zürcher (Katowice) MSC: 30L10 58E20 49Q05 30C65 PDF BibTeX XML Cite \textit{A. Lytchak} and \textit{S. Wenger}, Duke Math. J. 169, No. 4, 761--797 (2020; Zbl 07198465) Full Text: DOI Euclid
Lee, Yong Hah Uniqueness of the boundary value problem of harmonic maps via harmonic boundary. (English) Zbl 1443.58011 Bull. Malays. Math. Sci. Soc. (2) 43, No. 3, 2733-2743 (2020). Reviewer: Gabjin Yun (Yongin) MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{Y. H. Lee}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 3, 2733--2743 (2020; Zbl 1443.58011) Full Text: DOI
Huang, Jia-Cheng; Wu, Guoqiang Convergence of harmonic maps between Alexandrov spaces. (English) Zbl 07190153 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 77, 21 p. (2020). MSC: 58E20 PDF BibTeX XML Cite \textit{J.-C. Huang} and \textit{G. Wu}, Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 77, 21 p. (2020; Zbl 07190153) Full Text: DOI
Ou, Ye-Lin; Chen, Bang-Yen Biharmonic submanifolds and biharmonic maps in Riemannian geometry. (English) Zbl 07184925 Hackensack, NJ: World Scientific (ISBN 978-981-12-1237-6/hbk; 978-981-12-1239-0/ebook). xii, 528 p. (2020). Reviewer: Nicolas Ginoux (Metz) MSC: 53-02 53C20 53C40 53C43 58E20 PDF BibTeX XML Cite \textit{Y.-L. Ou} and \textit{B.-Y. Chen}, Biharmonic submanifolds and biharmonic maps in Riemannian geometry. Hackensack, NJ: World Scientific (2020; Zbl 07184925) Full Text: DOI
Branding, Volker On the evolution of regularized Dirac-harmonic maps from closed surfaces. (English) Zbl 1436.53030 Result. Math. 75, No. 2, Paper No. 57, 30 p. (2020). Reviewer: Georges Habib (Fanar) MSC: 53C27 53C43 58E20 58J35 PDF BibTeX XML Cite \textit{V. Branding}, Result. Math. 75, No. 2, Paper No. 57, 30 p. (2020; Zbl 1436.53030) Full Text: DOI
Wu, Guoqiang; Zheng, Yu On the extension of Ricci harmonic flow. (English) Zbl 1435.53071 Result. Math. 75, No. 2, Paper No. 55, 21 p. (2020). MSC: 53E20 53C21 58E20 PDF BibTeX XML Cite \textit{G. Wu} and \textit{Y. Zheng}, Result. Math. 75, No. 2, Paper No. 55, 21 p. (2020; Zbl 1435.53071) Full Text: DOI
Seo, Keomkyo; Yun, Gabjin Liouville-type theorems for weighted \(p\)-harmonic 1-forms and weighted \(p\)-harmonic maps. (English) Zbl 1435.53051 Pac. J. Math. 305, No. 1, 291-310 (2020). MSC: 53C43 53C20 58A10 58E20 PDF BibTeX XML Cite \textit{K. Seo} and \textit{G. Yun}, Pac. J. Math. 305, No. 1, 291--310 (2020; Zbl 1435.53051) Full Text: DOI
Fardoun, Ali; Montaldo, S.; Ratto, A. Weakly biharmonic maps from the ball to the sphere. (English) Zbl 07180886 Geom. Dedicata 205, 167-175 (2020). MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{A. Fardoun} et al., Geom. Dedicata 205, 167--175 (2020; Zbl 07180886) Full Text: DOI
Branding, Volker On interpolating sesqui-harmonic maps between Riemannian manifolds. (English) Zbl 1442.58013 J. Geom. Anal. 30, No. 1, 248-273 (2020). Reviewer: Gabjin Yun (Yongin) MSC: 58E20 31B30 PDF BibTeX XML Cite \textit{V. Branding}, J. Geom. Anal. 30, No. 1, 248--273 (2020; Zbl 1442.58013) Full Text: DOI
Han, Xiaoli; Liu, Lei; Zhao, Liang A global weak solution to the Lorentzian harmonic map flow. (English) Zbl 1434.53068 Sci. China, Math. 63, No. 1, 155-166 (2020). MSC: 53C43 58E20 53C50 PDF BibTeX XML Cite \textit{X. Han} et al., Sci. China, Math. 63, No. 1, 155--166 (2020; Zbl 1434.53068) Full Text: DOI
Branding, Volker; Luo, Yong A nonexistence theorem for proper biharmonic maps into general Riemannian manifolds. (English) Zbl 1434.53067 J. Geom. Phys. 148, Article ID 103557, 9 p. (2020). MSC: 53C43 58E20 53C20 PDF BibTeX XML Cite \textit{V. Branding} and \textit{Y. Luo}, J. Geom. Phys. 148, Article ID 103557, 9 p. (2020; Zbl 1434.53067) Full Text: DOI
Millot, Vincent; Pegon, Marc Minimizing \(1/2\)-harmonic maps into spheres. (English) Zbl 1437.35310 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 55, 37 p. (2020). MSC: 35J60 58E20 35R11 35B65 PDF BibTeX XML Cite \textit{V. Millot} and \textit{M. Pegon}, Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 55, 37 p. (2020; Zbl 1437.35310) Full Text: DOI
Körpinar, Talat; Asil, Vedat Construction for fluid flows of tangent spherical indicatrix by flows. (English) Zbl 1431.31003 Bol. Soc. Parana. Mat. (3) 38, No. 1, 221-226 (2020). MSC: 31B30 58E20 PDF BibTeX XML Cite \textit{T. Körpinar} and \textit{V. Asil}, Bol. Soc. Parana. Mat. (3) 38, No. 1, 221--226 (2020; Zbl 1431.31003) Full Text: Link
Miśkiewicz, Michał On Hölder regularity of the singular set of energy minimizing harmonic maps into closed manifolds. (English) Zbl 1439.31005 Calc. Var. Partial Differ. Equ. 59, No. 1, Paper No. 36, 15 p. (2020). MSC: 31B05 53C43 58E20 PDF BibTeX XML Cite \textit{M. Miśkiewicz}, Calc. Var. Partial Differ. Equ. 59, No. 1, Paper No. 36, 15 p. (2020; Zbl 1439.31005) Full Text: DOI
Gudmundsson, Sigmundur; Sobak, Marko Proper \(r\)-harmonic functions from Riemannian manifolds. (English) Zbl 1439.31008 Ann. Global Anal. Geom. 57, No. 1, 217-223 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 31B30 53C43 58E20 PDF BibTeX XML Cite \textit{S. Gudmundsson} and \textit{M. Sobak}, Ann. Global Anal. Geom. 57, No. 1, 217--223 (2020; Zbl 1439.31008) Full Text: DOI
Chen, Qun; Jost, Jürgen; Qiu, Hongbing On VT-harmonic maps. (English) Zbl 1432.58010 Ann. Global Anal. Geom. 57, No. 1, 71-94 (2020). MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{Q. Chen} et al., Ann. Global Anal. Geom. 57, No. 1, 71--94 (2020; Zbl 1432.58010) Full Text: DOI
Zhao, Guangwen \(V\)-harmonic morphisms between Riemannian manifolds. (English) Zbl 1432.58013 Proc. Am. Math. Soc. 148, No. 3, 1351-1361 (2020). MSC: 58E20 53C43 32Q60 35B53 PDF BibTeX XML Cite \textit{G. Zhao}, Proc. Am. Math. Soc. 148, No. 3, 1351--1361 (2020; Zbl 1432.58013) Full Text: DOI
Omori, Toshiaki Exponentially harmonic maps of complete Riemannian manifolds. (English) Zbl 1431.53069 Manuscr. Math. 161, No. 1-2, 205-212 (2020). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{T. Omori}, Manuscr. Math. 161, No. 1--2, 205--212 (2020; Zbl 1431.53069) Full Text: DOI
Cheng, Da Rong Asymptotics for the Ginzburg-Landau equation on manifolds with boundary under homogeneous Neumann condition. (English) Zbl 1433.35375 J. Funct. Anal. 278, No. 4, Article ID 108364, 93 p. (2020). MSC: 35Q56 35B40 58E20 35B35 PDF BibTeX XML Cite \textit{D. R. Cheng}, J. Funct. Anal. 278, No. 4, Article ID 108364, 93 p. (2020; Zbl 1433.35375) Full Text: DOI
Branding, Volker The stress-energy tensor for polyharmonic maps. (English) Zbl 1450.58006 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111616, 17 p. (2020). Reviewer: Ye-Lin Ou (Commerce) MSC: 58E20 53C43 31B30 35J48 35J91 PDF BibTeX XML Cite \textit{V. Branding}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111616, 17 p. (2020; Zbl 1450.58006) Full Text: DOI
Benoist, Yves; Hulin, Dominique Harmonic measures on negatively curved manifolds. (Mesures harmoniques sur les variétés de courbure négative.) (French. English summary) Zbl 07279523 Ann. Inst. Fourier 69, No. 7, 2951-2971 (2019). MSC: 53C43 53C24 53C35 58E20 PDF BibTeX XML Cite \textit{Y. Benoist} and \textit{D. Hulin}, Ann. Inst. Fourier 69, No. 7, 2951--2971 (2019; Zbl 07279523) Full Text: DOI
Rehman, Najma Abdul Harmonic maps on generalized metric manifolds. (English) Zbl 07276337 Balkan J. Geom. Appl. 24, No. 1, 65-72 (2019). MSC: 53C15 53C43 58E20 PDF BibTeX XML Cite \textit{N. A. Rehman}, Balkan J. Geom. Appl. 24, No. 1, 65--72 (2019; Zbl 07276337) Full Text: Link
Belishev, M. I.; Vakulenko, A. F. On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds. (English) Zbl 1441.30069 Cubo 21, No. 1, 1-19 (2019). MSC: 30G35 58E20 PDF BibTeX XML Cite \textit{M. I. Belishev} and \textit{A. F. Vakulenko}, Cubo 21, No. 1, 1--19 (2019; Zbl 1441.30069) Full Text: DOI
Kazemi Torbaghan, Seyed Mehdi; Rezaii, Morteza Mirmohammad Warped products, biharmonic and semi-conformal maps. (English) Zbl 07179437 Math. Rep., Buchar. 21(71), No. 4, 441-459 (2019). Reviewer: Gabjin Yun (Yongin) MSC: 58E20 53C20 PDF BibTeX XML Cite \textit{S. M. Kazemi Torbaghan} and \textit{M. M. Rezaii}, Math. Rep., Buchar. 21(71), No. 4, 441--459 (2019; Zbl 07179437)
Huang, Libing; Liu, Huaifu; Mo, Xiaohuan On the Landsberg curvature of a class of Finsler metrics generated from the navigation problem. (English) Zbl 1434.53023 Pac. J. Math. 302, No. 1, 77-96 (2019). MSC: 53B40 58E20 PDF BibTeX XML Cite \textit{L. Huang} et al., Pac. J. Math. 302, No. 1, 77--96 (2019; Zbl 1434.53023) Full Text: DOI
Benkartab, Aicha; Cherif, Ahmed Mohammed New methods of construction for biharmonic maps. (English) Zbl 1433.53094 Kyungpook Math. J. 59, No. 1, 135-147 (2019). MSC: 53C43 53C20 58E20 53C22 PDF BibTeX XML Cite \textit{A. Benkartab} and \textit{A. M. Cherif}, Kyungpook Math. J. 59, No. 1, 135--147 (2019; Zbl 1433.53094) Full Text: DOI
Urakawa, Hajime Biharmonic Hermitian vector bundles over compact Kähler manifolds and compact Einstein Riemannian manifolds. (English) Zbl 1433.53095 Note Mat. 39, No. 2, 95-110 (2019). MSC: 53C43 58E20 53C07 PDF BibTeX XML Cite \textit{H. Urakawa}, Note Mat. 39, No. 2, 95--110 (2019; Zbl 1433.53095) Full Text: DOI
Urakawa, Hajime Biharmonic maps on principal \(G\)-bundles over complete Riemannian manifolds of nonpositive Ricci curvature. (English) Zbl 07155456 Mich. Math. J. 68, No. 1, 19-31 (2019). MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{H. Urakawa}, Mich. Math. J. 68, No. 1, 19--31 (2019; Zbl 07155456) Full Text: DOI
Cederbaum, Carla; Rinne, Oliver; Strehlau, Markus A flow approach to Bartnik’s static metric extension conjecture in axisymmetry. (English) Zbl 1437.83011 Pure Appl. Math. Q. 15, No. 2, 611-666 (2019). Reviewer: P. K. Sahoo (Hyderabad) MSC: 83C05 83C15 53Z05 53C20 58E20 PDF BibTeX XML Cite \textit{C. Cederbaum} et al., Pure Appl. Math. Q. 15, No. 2, 611--666 (2019; Zbl 1437.83011) Full Text: DOI arXiv
Chiang, Yuan-Jen Exponentially harmonic maps between surfaces. (English) Zbl 1450.58007 Anal. Math. Phys. 9, No. 4, 1729-1739 (2019). Reviewer: Ye-Lin Ou (Commerce) MSC: 58E20 58-02 PDF BibTeX XML Cite \textit{Y.-J. Chiang}, Anal. Math. Phys. 9, No. 4, 1729--1739 (2019; Zbl 1450.58007) Full Text: DOI
Dragomir, Sorin; Yang, Guilin Solitonic metrics and harmonic maps. (English) Zbl 07151968 Anal. Math. Phys. 9, No. 4, 1547-1581 (2019). MSC: 53C25 53C43 58E20 PDF BibTeX XML Cite \textit{S. Dragomir} and \textit{G. Yang}, Anal. Math. Phys. 9, No. 4, 1547--1581 (2019; Zbl 07151968) Full Text: DOI
Toulisse, Jérémy Minimal diffeomorphism between hyperbolic surfaces with cone singularities. (English) Zbl 1436.53046 Commun. Anal. Geom. 27, No. 5, 1163-1203 (2019). Reviewer: Gabjin Yun (Yongin) MSC: 53C43 58E20 53C42 PDF BibTeX XML Cite \textit{J. Toulisse}, Commun. Anal. Geom. 27, No. 5, 1163--1203 (2019; Zbl 1436.53046) Full Text: DOI arXiv
Mondal, Chandan Kumar; Shaikh, Absos Ali Some results in \(\eta \)-Ricci soliton and gradient \(\rho \)-Einstein soliton in a complete Riemannian manifold. (English) Zbl 1429.53043 Commun. Korean Math. Soc. 34, No. 4, 1279-1287 (2019). MSC: 53C15 53C21 53E20 58E20 58J05 PDF BibTeX XML Cite \textit{C. K. Mondal} and \textit{A. A. Shaikh}, Commun. Korean Math. Soc. 34, No. 4, 1279--1287 (2019; Zbl 1429.53043) Full Text: DOI
Urakawa, Hajime Harmonic maps and biharmonic Riemannian submersions. (English) Zbl 1432.58012 Note Mat. 39, No. 1, 1-24 (2019). Reviewer: Eric Loubeau (Brest) MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{H. Urakawa}, Note Mat. 39, No. 1, 1--24 (2019; Zbl 1432.58012) Full Text: DOI
Zhang, Hui-Chun; Zhong, Xiao; Zhu, Xi-Ping Quantitative gradient estimates for harmonic maps into singular spaces. (English) Zbl 1433.58018 Sci. China, Math. 62, No. 11, 2371-2400 (2019). Reviewer: Gabjin Yun (Yongin) MSC: 58E20 PDF BibTeX XML Cite \textit{H.-C. Zhang} et al., Sci. China, Math. 62, No. 11, 2371--2400 (2019; Zbl 1433.58018) Full Text: DOI arXiv
Karpukhin, Mikhail On the Yang-Yau inequality for the first Laplace eigenvalue. (English) Zbl 1429.58040 Geom. Funct. Anal. 29, No. 6, 1864-1885 (2019). MSC: 58J50 53A10 58E20 PDF BibTeX XML Cite \textit{M. Karpukhin}, Geom. Funct. Anal. 29, No. 6, 1864--1885 (2019; Zbl 1429.58040) Full Text: DOI arXiv
Guo, Chang-Yu; Xiang, Chang-Lin Some regularity results for \(p\)-harmonic mappings between Riemannian manifolds. (English) Zbl 1432.58011 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 405-424 (2019). Reviewer: Gabjin Yun (Yongin) MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{C.-Y. Guo} and \textit{C.-L. Xiang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 405--424 (2019; Zbl 1432.58011) Full Text: DOI arXiv
Beliaev, Dmitry; Cammarota, Valentina; Wigman, Igor Two point function for critical points of a random plane wave. (English) Zbl 1429.58038 Int. Math. Res. Not. 2019, No. 9, 2661-2689 (2019). Reviewer: Ramdin Mawia (Kolkata) MSC: 58J50 58E05 58E20 PDF BibTeX XML Cite \textit{D. Beliaev} et al., Int. Math. Res. Not. 2019, No. 9, 2661--2689 (2019; Zbl 1429.58038) Full Text: DOI arXiv
Biernat, Paweł; Seki, Yukihiro Type II blow-up mechanism for supercritical harmonic map heat flow. (English) Zbl 1427.35100 Int. Math. Res. Not. 2019, No. 2, 407-456 (2019). Reviewer: Dian K. Palagachev (Bari) MSC: 35K40 53E99 35B35 35B44 35K55 58E20 PDF BibTeX XML Cite \textit{P. Biernat} and \textit{Y. Seki}, Int. Math. Res. Not. 2019, No. 2, 407--456 (2019; Zbl 1427.35100) Full Text: DOI
Gupta, Subhojoy Limits of harmonic maps and crowned hyperbolic surfaces. (English) Zbl 1439.30069 Trans. Am. Math. Soc. 372, No. 11, 7573-7596 (2019). Reviewer: Gianluca Faraco (Bengaluru) MSC: 30F60 57M50 58E20 PDF BibTeX XML Cite \textit{S. Gupta}, Trans. Am. Math. Soc. 372, No. 11, 7573--7596 (2019; Zbl 1439.30069) Full Text: DOI arXiv
Zhao, Guangwen A monotonicity formula and a Liouville type theorem of \(V\)-harmonic maps. (English) Zbl 1428.58016 Bull. Korean Math. Soc. 56, No. 5, 1327-1340 (2019). MSC: 58E20 53C43 35B53 53C55 PDF BibTeX XML Cite \textit{G. Zhao}, Bull. Korean Math. Soc. 56, No. 5, 1327--1340 (2019; Zbl 1428.58016) Full Text: DOI
Feng, Shuxiang; Han, Yingbo Liouville theorems for generalized symphonic maps. (English) Zbl 1429.35043 J. Korean Math. Soc. 56, No. 3, 669-688 (2019). MSC: 35B53 58E20 53C21 35J20 PDF BibTeX XML Cite \textit{S. Feng} and \textit{Y. Han}, J. Korean Math. Soc. 56, No. 3, 669--688 (2019; Zbl 1429.35043) Full Text: DOI
Gastel, Andreas Regularity issues for Cosserat continua and \(p\)-harmonic maps. (English) Zbl 1430.58009 SIAM J. Math. Anal. 51, No. 6, 4287-4310 (2019). MSC: 58E20 74G40 74B20 PDF BibTeX XML Cite \textit{A. Gastel}, SIAM J. Math. Anal. 51, No. 6, 4287--4310 (2019; Zbl 1430.58009) Full Text: DOI arXiv
Aleman, Alexandru; Martín, María J.; Persson, Anna-Maria; Svensson, Martin Continuous deformations of harmonic maps and their unitons. (English) Zbl 1448.58013 Monatsh. Math. 190, No. 4, 599-614 (2019). Reviewer: Ilie Valuşescu (Bucureşti) MSC: 58E20 47A56 30F15 PDF BibTeX XML Cite \textit{A. Aleman} et al., Monatsh. Math. 190, No. 4, 599--614 (2019; Zbl 1448.58013) Full Text: DOI
Loubeau, E.; Markellos, M. The biharmonic homotopy problem for unit vector fields on 2-tori. (English) Zbl 1428.58015 Ann. Mat. Pura Appl. (4) 198, No. 5, 1639-1650 (2019). MSC: 58E20 53C20 58E30 PDF BibTeX XML Cite \textit{E. Loubeau} and \textit{M. Markellos}, Ann. Mat. Pura Appl. (4) 198, No. 5, 1639--1650 (2019; Zbl 1428.58015) Full Text: DOI arXiv
Deruelle, Alix A relative entropy for expanders of the harmonic map flow. (English) Zbl 1431.53106 Commun. Partial Differ. Equations 44, No. 12, 1481-1541 (2019). MSC: 53E99 58E20 37A35 PDF BibTeX XML Cite \textit{A. Deruelle}, Commun. Partial Differ. Equations 44, No. 12, 1481--1541 (2019; Zbl 1431.53106) Full Text: DOI arXiv
Jost, Jürgen; Liu, Lei; Zhu, Miaomiao Regularity of Dirac-harmonic maps with \(\lambda\)-curvature term in higher dimensions. (English) Zbl 1430.53070 Calc. Var. Partial Differ. Equ. 58, No. 6, Paper No. 187, 24 p. (2019). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{J. Jost} et al., Calc. Var. Partial Differ. Equ. 58, No. 6, Paper No. 187, 24 p. (2019; Zbl 1430.53070) Full Text: DOI
Branding, Volker; Oniciuc, Cezar Unique continuation theorems for biharmonic maps. (English) Zbl 07118825 Bull. Lond. Math. Soc. 51, No. 4, 603-621 (2019). MSC: 58E20 31B30 PDF BibTeX XML Cite \textit{V. Branding} and \textit{C. Oniciuc}, Bull. Lond. Math. Soc. 51, No. 4, 603--621 (2019; Zbl 07118825) Full Text: DOI
Mazet, Laurent; Rodríguez, Magdalena; Rosenberg, Harold Minimal graphs over Riemannian surfaces and harmonic diffeomorphisms. (English) Zbl 1432.53085 Am. J. Math. 141, No. 5, 1149-1177 (2019). Reviewer: James Hebda (St. Louis) MSC: 53C42 53C43 58E20 PDF BibTeX XML Cite \textit{L. Mazet} et al., Am. J. Math. 141, No. 5, 1149--1177 (2019; Zbl 1432.53085) Full Text: DOI arXiv
Shao, Yuanzhen; Wang, Changyou The harmonic map heat flow on conic manifolds. (English) Zbl 1448.58022 Zheng, Shijun (ed.) et al., Nonlinear dispersive waves and fluids. AMS special sessions on spectral calculus and quasilinear partial differential equations, and PDE analysis on fluid flows, Atlanta, GA, USA, January 5–7, 2017. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 725, 227-250 (2019). Reviewer: Vladimir Balan (Bucureşti) MSC: 58J35 53C43 58E20 PDF BibTeX XML Cite \textit{Y. Shao} and \textit{C. Wang}, Contemp. Math. 725, 227--250 (2019; Zbl 1448.58022) Full Text: DOI
Nakajima, Tôru Integral estimates for energy densities of non-constant harmonic maps. (English) Zbl 1423.35052 Manuscr. Math. 160, No. 3-4, 327-337 (2019). MSC: 35B45 35A15 53C43 35B65 58E20 PDF BibTeX XML Cite \textit{T. Nakajima}, Manuscr. Math. 160, No. 3--4, 327--337 (2019; Zbl 1423.35052) Full Text: DOI
Nakauchi, Nobumitsu Stress energy tensor for symphonic maps. (English) Zbl 1430.58010 Boll. Unione Mat. Ital. 12, No. 3, 431-440 (2019). Reviewer: Ye-Lin Ou (Commerce) MSC: 58E20 58D15 53C43 PDF BibTeX XML Cite \textit{N. Nakauchi}, Boll. Unione Mat. Ital. 12, No. 3, 431--440 (2019; Zbl 1430.58010) Full Text: DOI
Day, Stuart; Zarnescu, Arghir Dani Sphere-valued harmonic maps with surface energy and the \(K_{13}\) problem. (English) Zbl 1426.58002 Adv. Calc. Var. 12, No. 4, 363-392 (2019). MSC: 58E05 58E20 76A15 82D30 PDF BibTeX XML Cite \textit{S. Day} and \textit{A. D. Zarnescu}, Adv. Calc. Var. 12, No. 4, 363--392 (2019; Zbl 1426.58002) Full Text: DOI arXiv
Jost, Jürgen; Liu, Lei; Zhu, Miaomiao Correction to: “Asymptotic analysis for Dirac-harmonic maps from degenerating spin surfaces and with bounded index”. (English) Zbl 07114406 Calc. Var. Partial Differ. Equ. 58, No. 5, Paper No. 174, 1 p. (2019). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{J. Jost} et al., Calc. Var. Partial Differ. Equ. 58, No. 5, Paper No. 174, 1 p. (2019; Zbl 07114406) Full Text: DOI
Han, Yingbo A variation problem for stress-energy tensor. (English) Zbl 1426.58004 Result. Math. 74, No. 4, Paper No. 164, 26 p. (2019). Reviewer: Dumitru Motreanu (Perpignan) MSC: 58E20 PDF BibTeX XML Cite \textit{Y. Han}, Result. Math. 74, No. 4, Paper No. 164, 26 p. (2019; Zbl 1426.58004) Full Text: DOI
Chiang, Yuan-Jen Exponentially harmonic maps, Gauss maps and Gauss sections. (English) Zbl 1425.58009 Mediterr. J. Math. 16, No. 5, Paper No. 132, 16 p. (2019). MSC: 58E20 35J20 53C42 PDF BibTeX XML Cite \textit{Y.-J. Chiang}, Mediterr. J. Math. 16, No. 5, Paper No. 132, 16 p. (2019; Zbl 1425.58009) Full Text: DOI
Han, Xiaoli; Jost, Jürgen; Liu, Lei; Zhao, Liang Global existence of the harmonic map heat flow into Lorentzian manifolds. (English. French summary) Zbl 1431.53067 J. Math. Pures Appl. (9) 130, 130-156 (2019). Reviewer: Mehmet Akif Akyol (Bingöl) MSC: 53C43 53C50 58E20 PDF BibTeX XML Cite \textit{X. Han} et al., J. Math. Pures Appl. (9) 130, 130--156 (2019; Zbl 1431.53067) Full Text: DOI
Xu, Xiaowei; Yang, Ling; Zhang, Yongsheng Dirichlet boundary values on Euclidean balls with infinitely many solutions for the minimal surface system. (English. French summary) Zbl 1425.53011 J. Math. Pures Appl. (9) 129, 266-300 (2019). MSC: 53A10 53A07 53C42 58E20 PDF BibTeX XML Cite \textit{X. Xu} et al., J. Math. Pures Appl. (9) 129, 266--300 (2019; Zbl 1425.53011) Full Text: DOI arXiv
Huang, Shaosai; Wang, Bing Rigidity of vector valued harmonic maps of linear growth. (English) Zbl 1425.53076 Geom. Dedicata 202, 357-371 (2019). MSC: 53C43 53C21 58E20 PDF BibTeX XML Cite \textit{S. Huang} and \textit{B. Wang}, Geom. Dedicata 202, 357--371 (2019; Zbl 1425.53076) Full Text: DOI arXiv
Ferreira, Maria João; Simões, Bruno Ascenso; Wood, John C. Harmonic maps into the orthogonal group and null curves. (English) Zbl 1425.53075 Math. Z. 293, No. 1-2, 181-220 (2019). Reviewer: Dumitru Motreanu (Perpignan) MSC: 53C43 58E20 53C42 49Q05 PDF BibTeX XML Cite \textit{M. J. Ferreira} et al., Math. Z. 293, No. 1--2, 181--220 (2019; Zbl 1425.53075) Full Text: DOI arXiv
Püttmann, Thomas; Siffert, Anna Harmonic self-maps of cohomogeneity one manifolds. (English) Zbl 1430.58011 Math. Ann. 375, No. 1-2, 247-282 (2019). Reviewer: Mehmet Akif Akyol (Bingöl) MSC: 58E20 57S15 34B15 55M25 PDF BibTeX XML Cite \textit{T. Püttmann} and \textit{A. Siffert}, Math. Ann. 375, No. 1--2, 247--282 (2019; Zbl 1430.58011) Full Text: DOI
Dioos, Bart; Van der Veken, Joeri The Bonnet problem for harmonic maps to the three-sphere. (English) Zbl 1421.53063 Adv. Geom. 19, No. 3, 335-343 (2019). MSC: 53C43 58E20 53C42 PDF BibTeX XML Cite \textit{B. Dioos} and \textit{J. Van der Veken}, Adv. Geom. 19, No. 3, 335--343 (2019; Zbl 1421.53063) Full Text: DOI
Hocquet, Antoine Finite-time singularity of the stochastic harmonic map flow. (English. French summary) Zbl 1427.60124 Ann. Inst. Henri Poincaré, Probab. Stat. 55, No. 2, 1011-1041 (2019). MSC: 60H15 35R60 58E20 35K55 35B44 PDF BibTeX XML Cite \textit{A. Hocquet}, Ann. Inst. Henri Poincaré, Probab. Stat. 55, No. 2, 1011--1041 (2019; Zbl 1427.60124) Full Text: DOI Euclid arXiv
Thurston, Dylan P. Elastic graphs. (English) Zbl 07094012 Forum Math. Sigma 7, Paper No. e24, 84 p. (2019). MSC: 37E25 58E20 05C21 PDF BibTeX XML Cite \textit{D. P. Thurston}, Forum Math. Sigma 7, Paper No. e24, 84 p. (2019; Zbl 07094012) Full Text: DOI arXiv
Ohno, Shinji; Sakai, Takashi; Urakawa, Hajime Biharmonic homogeneous submanifolds in compact symmetric spaces and compact Lie groups. (English) Zbl 1423.58008 Hiroshima Math. J. 49, No. 1, 47-115 (2019). Reviewer: Mehmat Akif Akyol (Bingöl) MSC: 58E20 PDF BibTeX XML Cite \textit{S. Ohno} et al., Hiroshima Math. J. 49, No. 1, 47--115 (2019; Zbl 1423.58008) Full Text: DOI Euclid arXiv
Jost, Jürgen; Liu, Lei; Zhu, Miaomiao Asymptotic analysis for Dirac-harmonic maps from degenerating spin surfaces and with bounded index. (English) Zbl 1420.53071 Calc. Var. Partial Differ. Equ. 58, No. 4, Paper No. 142, 33 p. (2019); correction ibid. 58, No. 5, Paper No. 174, 1 p. (2019). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{J. Jost} et al., Calc. Var. Partial Differ. Equ. 58, No. 4, Paper No. 142, 33 p. (2019; Zbl 1420.53071) Full Text: DOI
Ohno, Shinji Biharmonic orbits of isotropy representations of symmetric spaces. (English) Zbl 07081612 Kodai Math. J. 42, No. 1, 48-63 (2019). MSC: 58E20 53C43 PDF BibTeX XML Cite \textit{S. Ohno}, Kodai Math. J. 42, No. 1, 48--63 (2019; Zbl 07081612) Full Text: DOI Euclid arXiv