×

A search for maximum species abundances in ecological communities under conditional diversity optimization. (English) Zbl 0949.92024

Summary: We study a multispecies community of autotrophic microorganisms which grow in a batch culture regime with several perfectly complementary resources. A basic hypothesis is that a station phase of the polyculture corresponds to a maximum diversity under the constraints having the meaning of matter conservation laws. The corresponding conditional extremum problem is studied in detail. It is shown that a unique solution to this problem – a “species structure formula” – adequately describes the experimental data. We prove a number of strict statements concerning the domain of definition and maxima of the obtained solutions. These statements find an adequate interpretation as limitation principles in ecology and in the problems of community structure control.

MSC:

92D40 Ecology
65K99 Numerical methods for mathematical programming, optimization and variational techniques
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Armstrong, R. A. and R. McGehee. 1980. Competitive exclusion.American Naturalist 115, 151–170. · doi:10.1086/283553
[2] Ballyk, M. M. and G. S. K. Wolkowicz. 1995. An examination of the thresholds of enrichment: a resource-based growth model.J. Math. Biol. 33, 435–457. · Zbl 0819.92025 · doi:10.1007/BF00176381
[3] Blomqvist, P., H. Olsson, H. Olofsson and O. Broberg 1989. Enclosure experiments with low-dose additions of phosporus and nitrogen in the acidified lake Njupfatet, Central Sweden.Int. Rev. Gesamt. Hydrobiol. 74, 611–631. · doi:10.1002/iroh.19890740604
[4] Brillouin, L. 1963.Science and Information Theory. New York: Academic Press. · Zbl 0071.13104
[5] Bulgakov, N. G. and A. P. Levich. 1995. Biogenic elements in the environment and phytoplankton: ratio N:P as an independent factor to regulate the algocoenosis structure.Uspekhi Sovremennoy Biologii 115, 13–23 (in Russian).
[6] Butler, G. I. and G. S. K. Wolkowicz. 1987. Exploitative competition in a chemostat for two complementary, and possibly inhibitory, resources.Math. Biosci. 83, 1–48. · Zbl 0609.92035 · doi:10.1016/0025-5564(87)90002-2
[7] Degermedzhy, A. G., V. A. Adamovich and V. N. Pozdyayev. 1989. On the cybernetics of bacterial communities: observations, experiments, and theory.Cybernetics and Systems 20, 501–541. · Zbl 0685.92016 · doi:10.1080/01969728908902220
[8] Droop, M. R. 1968. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition inMonochrysis lutheri J. Mar. Biol. Assoc. U.K. 48, 689–733. · doi:10.1017/S0025315400019238
[9] Droop, M. R. 1973. Some thoughts on nutrient limitation in algae.J. Phycol. 9, 264–272.
[10] Droop, M. R. 1983. 25 years of algae growth kinetics: a personal view.Bot. Mar. 26, 99–112. · doi:10.1515/botm.1983.26.3.99
[11] Fedorov, V. D., E. N. Kondrik and A. P. Levich. 1977. A rank distribution of White Sea phytoplankton abundance.Doklady AN SSSR 236, 264–267. (in Russian).
[12] Fredrickson, A. G. and G. Stephanopoulos. 1981. Microbial competition.Science 213, 972–979. · Zbl 1225.92054 · doi:10.1126/science.7268409
[13] Gibbs, J. W. 1902.Elementary Principles in Statistical Mechanics. New York: Longmans, Green & Co. · JFM 33.0708.01
[14] Haken, H. 1988.Information and Self-Organization: A Macroscopic Approach to Complex Systems. Berlin: Springer. · Zbl 0659.93002
[15] Intriligator, M. 1971.Mathematical Optimization and Economic Theory. New York: Prentice-Hall. · Zbl 1140.90302
[16] Jøgensen, S. E. 1980.Lake Management. Oxford: Pergamon Press.
[17] Karpouzas, I. 1986. Respiratory parameters. Minimization of the energy cost of breathing.Math. Biosci. 78, 1–20. · Zbl 0581.92008 · doi:10.1016/0025-5564(86)90028-3
[18] Ketchum, B. H. 1939. The absortion of phosphate and nitrate by illuminated cultures ofNitzschia closterium Am. J. Bot. 26, 399–407. · doi:10.2307/2436840
[19] Kilham, S. S. 1986. Dynamic of Lake Michigan natural phytoplankton communities in continuous cultures along a Si: P loading gradient.Can. J. Fish. and Aquat. Sci. 43, 351–360. · doi:10.1139/f86-045
[20] Klapwijk, S. P. 1990. Comparison of historical and recent data on hydrochemistry and phytoplankton in the Rijnland area (The Netherlands).Hydrobiologia 199, 87–100. · doi:10.1007/BF00005601
[21] Kuenzler, E. J. and B. H. Ketchum. 1962. Rate of phosphorus uptake byPhaedactylum tricornutum.Biol. Bull. Marine Biol. Lab., Woods Hall 123, 134–145. · doi:10.2307/1539510
[22] Leon, J. A. and D. B. Tumpson. 1975. Competition between two species for two complementary or substitutable resources.J. Theor. Biol. 50, 185–201. · doi:10.1016/0022-5193(75)90032-6
[23] Levich, A. P. 1980.Structure of Ecological Communities. Moscow: Moscow University Press (in Russian).
[24] Levich, A. P. 1982.Sets Theory, the Language of Category Theory and Their Applications in Theoretical Biology. Moscow: Moscow University Press (in Russian). · Zbl 0545.92001
[25] Levich, A. P., N. V. Revkova and N. G. Bulgakov. 1986a. ”The ”consumption-growth” process in microalgal cultures and cells’ demands for mineral nutrition components. InEcological Forecast, V. N. Maximov (Ed), pp. 132–139. Moscow: Moscow University Press (in Russian).
[26] Levich, A. P., E. G. Liubimova and G. Sh. Martashvili. 1986b. Species structure and consumption of substrate-energy factors in laboratory algocoenoses. InEcological Forecast, V. N. Maximov (Ed), pp. 69–103. Moscow: Moscow University Press (in Russian).
[27] Levich, A. P. and V. I. Artyukhova. 1991. Measuring requirements of phytoplankton for environmental substrate factors.Biol. Bull. of the Academy of Sciences of the USSR 18, 86–93.
[28] Levich, A. P. and N. G. Bulgakov. 1992. Regulation of species and size composition in phytoplankton communitiesin situ by N:P ratio.Russian J. Aquatic Ecology 2, 149–159.
[29] Levich, A. P. and E. G. Lichman. 1992. Model studies of an opportunity of directed structure change of a phytoplankton community.Zhurnal Obshchey Biologii 53, 689–703 (in Russian).
[30] Levich, A. P., A. A. Khudoyan, N. G. Bulgakov and V. I. Artyukhova. 1992. On a possibility to control the species and size structure of a community in experiments with natural phytoplanktonin vitro.Biologicheskiye Nauki 7, 17–31 (in Russian).
[31] Levich, A. P. and N. G. Bulgakov. 1993. Possibility of controlling the algal community structure in the laboratory.Biol. Bulletin of the Russian Acad. Sciences 20, 457–464.
[32] Levich, A. P., V. L. Alexeyev and S. Yu. Rybakova. 1993a. Optimization of the structure of ecological communities: model analysis.Biophysics 38, 903–911.
[33] Levich, A. P., D. G. Zamolodchikov and V. L. Alexeyev. 1993b. Limiting link rule for multispecies community consuming essential resources.Zh. Obshch. Biol. 54, 271–286 (in Russian).
[34] Levich, A. P., V. L. Alexeyev and V. A. Nikulin. 1994. Mathematical aspects of variation modelling in ecology of communities.Matematicheskoe modelirovanie 6, 55–76 (in Russian). · Zbl 0978.92501
[35] Levich, A.P. 1995. Time as variability of natural systems: ways of quantitative description of changes and creations of changes by substantial flows. InOn the Way to Understanding the Time Phenomenon: The Constructions of Time in Natural Sciences, Part 1, A. P. Levich (Ed), pp. 149–199. Singapore: World Scientific.
[36] Levine, R. D. and M. Tribus (Eds). 1979.The Maximum Entropy Formalism. Cambridge, MA: MIT Press.
[37] Lewis III, H. W., N. G. Goel and R. L. Thompson. 1988. Simulation of cellular compaction and internalization in mammalian embryo development–II. Models for spherical embryos.Bull. Math. Biol. 50, 121–142. · Zbl 0643.92006
[38] Liebig, J. 1840.Chemistry in Its Application to Agriculture and Physiology. London: Taylor & Walton.
[39] Luenberger, D. G. 1984.Linear and Nonlinear Programming, 2nd ed. Reading, MA: Addison-Wesley. · Zbl 0571.90051
[40] Ludwig, J. A. and J. F. Reynolds. 1988.Statistical Ecology: A Primer on Methods and Computing. New York: Wiley.
[41] Lurie, D., J. Valls and J. Wagensberg. 1983. Thermodynamic approach to biomass distribution in ecological systems.Bull. Math. Biol. 45, 869–872.
[42] MacArthur, R. H. 1955. Fluctuations of animal populations and measure of community stability.Ecology 36, 533–536. · doi:10.2307/1929601
[43] Margalef, R. 1951. A practical proposal to stability.Publ. De Inst. De Biol. Appl. Univ. De Barcelona 6, 5–19.
[44] Menhinick, E. F. 1964. A comparison of some species-individuals diversity indices applied to samples of field insects.Ecology 48, 392–404.
[45] Mitscherlich, E. A. 1925.Die Bestimmung des Dungerbedurfuisses der Bodens. Berlin: 2 Aufl. Darly.
[46] Motomura, I. 1932. A statistical treatment of associations.Japan. J. Zool. 44, 379–383 (in Japanese).
[47] Odum, E. P. 1983.Basic Ecology, Vol. 2. Philadelphia: Saunders College Publ.
[48] Odum, H. T., J. E. Cantlon and L. S. Kornicker. 1960. An organizational hierarchy postulate for the interpretation of species-individuals distributions, species entropy and ecosystem evolution and the meaning of a species variety index.Ecology 41, 395–399. · doi:10.2307/1930248
[49] Prits, A. K. 1974.Principle of Stationary State of Open System and Population Dynamic. Kaliningrad: Kaliningrad University Press (in Russian).
[50] Rhee, G.-Yu. 1982. Effects of environmental factors and their interactions on phytoplankton growth.Adv. Microb. Ecol. 6, 33–74.
[51] Rhee, G.-Yu. and I. J. Gotham. 1980. Optimum N:P ratios and coexistence of planktonic algae.J. Phycol. 16, 486–489. · doi:10.1111/j.1529-8817.1980.tb03065.x
[52] Rosen, R. 1986. Optimality in biology and medicine.J. Math. Analysis and Appl. 119, 203–222. · Zbl 0611.92034 · doi:10.1016/0022-247X(86)90153-8
[53] Schuster, S. and R. Heinrich. 1991. Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks. I. Theoretical analysis.J. Math. Biol. 29, 425–442. · Zbl 0731.92006 · doi:10.1007/BF00160470
[54] Tilman, D. 1982.Resource Competition and Community Structure. New Jersey: Princeton University Press.
[55] Vavilin, V. A., V. B. Vasiliev and S. V. Rytov. 1993.Modelling of Organic Matter Destruction by Microorganisms Community. Moscow: Nauka (in Russian).
[56] Waltman, P., S. P. Hubbel and S. B. Hsu. 1980. Theoretical and experimental investigation of microbial competition in continuous culture. InModelling and Differential Equations, T. Burton (Ed), New York: Marcel Dekker. · Zbl 0442.92015
[57] Wilhelm, T., E. Hoffmann-Klipp and R. Heinrich. 1994. An evolutionary approach to enzyme kinetics: optimisation of ordered mechanisms.Bull. Math. Biol. 56, 65–106. · Zbl 0796.92013
[58] Woodwell, G. M. and H. H. Smith (Eds). 1969.Diversity and Stability in Ecological Systems. Brookhaven Symp. Biol., Vol. 22.
[59] Zamolodchikov, D. G. and A. P. Levich. 1992. Selection of plankton alga species for complete utilization of polybiogenic load on a waterbody.Moscow University Biological Sciences Bulletin 47, 234–246.
[60] Zamolodchikov, D. G., A. P. Levich and S. Yu. Rybakova. 1993. A study of the adequacy of a category-theoretic model of phytoplankton communities.Ecological Monitoring Problems and Ecosystem Modelling 15, 234–246 (in Russian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.