×

Paraconsistent computation and dialetheic machines. (English) Zbl 1429.03149

Andreas, Holger (ed.) et al., Logical studies of paraconsistent reasoning in science and mathematics. Cham: Springer. Trends Log. Stud. Log. Libr. 45, 205-221 (2016).
Summary: Are there are any properly paraconsistent computations – effective procedures that are recognizable as such, but which are not recognized by non-paraconsistent logic? First, we motivate a positive answer, from arguments by Sylvan and Copeland, Routley, and Priest. Then, we look at some simple formulations of dialetheic machines and their basic properties, and discuss these in relation to the halting problem.
For the entire collection see [Zbl 1362.03003].

MSC:

03D10 Turing machines and related notions
03B35 Mechanization of proofs and logical operations
68Q04 Classical models of computation (Turing machines, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agudelo, J., & Carnielli, W. (2010). Paraconsistent machines and their relation to quantum computing. Journal of Logic and Computation, 20(2), 573-595. · Zbl 1196.03053 · doi:10.1093/logcom/exp072
[2] Avron. A., & Zamansky, A. (2011). Non-deterministic semantics for logical systems-a survey. In Handbook of Philosophical Logic, vol. 16, p. 227304. Berlin: Kluwer Academic Publishers.
[3] Azzouni, J. (2004). The derivation-indicator view of mathematical practice. Philosophia Mathematica, 3(12), 81-105. · Zbl 1136.00301 · doi:10.1093/philmat/12.2.81
[4] Batens, D., Mortensen, C., Priest, G., & van Bendegem, J-P. (Eds.), (2000). Frontiers of Paraconsistent Logic. Philadelphia: Research Studies Press. · Zbl 0978.00027
[5] Berto, F. (2009). The gödel paradox and wittgenstein’s reasons. Philosophia Mathematica, 12(2), 208-219. · Zbl 1182.03010 · doi:10.1093/philmat/nkp001
[6] Berto, F. (2009). There’s Something About Gödel. New Jersey: Wiley-Blackwell. · Zbl 1183.03001
[7] Brady, R. (2006). Universal Logic. Stanford: CSLI. · Zbl 1234.03010
[8] Cooper, S.B., Lowe, B., & Sorbi, A. (Ed.). (2008). New Computational Paradigms: Changing Conceptions of what is Computable. Berlin: Springer. · Zbl 1130.68005
[9] Copeland, B. J., & Sylvan, R. (1999). Beyond the universal turing machine. Australasian Journal of Philosophy, 77, 46-66. · doi:10.1080/00048409912348801
[10] Da Costa, N. Paraconsistent mathematics. In Batens et al. [4], pp. 165-180. · Zbl 1006.03028
[11] Michael, J. (1980). Dunn. Relevant robinson’s arithmetic. Studia Logica, 38, 407-418. · Zbl 0434.03018
[12] Horsten, L. (2005). Remarks on the content and extension of the notion of provability. Logique et Analyse, 189-192, 15-32. · Zbl 1118.03004
[13] Meyer, R.K. (1976). Proving completeness relevantly for r. typescript.
[14] Meyer, R. K., & Mortensen, C. (1984). Inconsistent models for relevant arithmetics. Journal of Symbolic Logic, 49, 917-929. · Zbl 0599.03015 · doi:10.2307/2274145
[15] Mortensen, C. (1995). Inconsistent Mathematics. Dordrecht; New York: Kluwer Academic Publishers. · Zbl 0827.03013 · doi:10.1007/978-94-015-8453-1
[16] Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8, 219-241. · Zbl 0402.03012 · doi:10.1007/BF00258428
[17] Graham, P. (1994). Is arithmetic consistent? Mind, 103(411), 337-349.
[18] Priest, G. (1997). Inconsistent models of arithmetic part i: Finite models. Journal of Philosophical Logic, 26, 223-235. · Zbl 0878.03017 · doi:10.1023/A:1004251506208
[19] Priest, G. (2006). In Contradiction: A Study of the Transconsistent. 2nd edn. Oxford: Oxford University Press. · Zbl 0682.03002
[20] Priest, G. (2014). One. Oxford: Oxford University Press.
[21] Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7, 5-41. · Zbl 0941.03003 · doi:10.1093/philmat/7.1.5
[22] Restall, G. (1992). A note on naïve set theory in \(LP\). Notre Dame Journal of Formal Logic, 33, 422-432. · Zbl 0768.03033 · doi:10.1305/ndjfl/1093634406
[23] Rogers, H. (1967). Theory of recursive functions and effective computability. McGraw-Hill series in higher mathematics: McGraw-Hill. · Zbl 0183.01401
[24] Routley, R. (1977). Ultralogic as universal? Relevance Logic Newsletter, 2, 51-89. · Zbl 0435.03005
[25] Routley, R. (1979). Dialectical logic, semantics and metamathematics. Erkenntnis, 14, 301-331. · doi:10.1007/BF00174897
[26] Shapiro, S. (1998). Incompleteness, mechanism, and optimism. Bulletin of Symbolic Logic, 4, 273-302. · Zbl 0921.03005 · doi:10.2307/421032
[27] Shapiro, S. (2002). Incompleteness and inconsistency. Mind, 111, 817-832. · doi:10.1093/mind/111.444.817
[28] Smith, P. (2007). An Introduction to Gödel’s Theorems. Cambridge. · Zbl 1154.03002
[29] Sylvan, R., & Copeland, J. (2000). Computability is logic relative. In D Hyde, G Priest, (Eds.), Sociative Logics and their applications, pp. 189-199. Ashgate.
[30] Tanswell, F. (2014). Saving proof from paradox: Against the inconsistency of informal mathematics, 2014. Presented at ‘Paraconsistent Reasoning in Science and Mathematics’, LMU/MCMP, June 12. · Zbl 1429.03048
[31] Tarski, A. (1944). The semantic conception of truth and the foundations of semantics. Philosophy and Phenomenological Research, 4, 341-376. · Zbl 0061.00807 · doi:10.2307/2102968
[32] Van Bendegem, J.P. (2003). Classical arithmetic is quite unnatural. Logic and Logical Philosophy, 11, 231-249. · Zbl 1117.03311
[33] Weber, Z.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.