×

An economic hybrid \(J_2\) analytical orbit propagator program based on SARIMA models. (English) Zbl 1264.70059

Summary: We present a new economic hybrid analytical orbit propagator program based on SARIMA models, which approximates to a \(4 \times 4\) tesseral analytical theory for a Quasi-Spot satellite. The \(J_{2}\) perturbation is described by a first-order closed-form analytical theory, whereas the effects produced by the higher orders of \(J_{2}\) and the perturbation of the rest of zonal and tesseral harmonic coefficients are modelled by SARIMA models. Time series analysis is a useful statistical prediction tool, which allows building a model for making future predictions based on the study of past observations. The combination of the analytical techniques and time series analysis allows an increase in accuracy without significant loss in efficiency of the new propagators, as a consequence of modelling higher-order terms and other perturbations are not taken into account in the analytical theory.

MSC:

70M20 Orbital mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Brouwer, “Solution of the problem of artificial satellite theory without drag,” The Astronomical Journal, vol. 64, pp. 378-397, 1959. · doi:10.1086/107958
[2] K. Aksnes, “A second-order artificial satellite theory based on an intermediate orbit,” Astronomical Journal, vol. 75, no. 9, pp. 1066-1076, 1970. · doi:10.1086/111061
[3] H. Kinoshita, “Third-order solution of an artificial satellite theory, Smithsonian Astrophysical Observatory,” Special Report No. 379, Cambridge, Mass, USA, 1977.
[4] F. R. Hoots and R. L. Roehrich, Spacetrack Report No. 3: Models for Propagation of the NORAD Element Sets, U.S. Air Force Aerospace Defense Command, Colorado Springs, Colo, USA, 1980.
[5] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, Calif, USA, 1976. · Zbl 0363.62069
[6] A. Deprit, “Delaunay normalisations,” Celestial Mechanics and Dynamical Astronomy, vol. 26, no. 1, pp. 9-21, 1982. · Zbl 0512.70016 · doi:10.1007/BF01233178
[7] A. A. Kamel, “Peturbation method in the theory of nonlinear oscillations,” Celestial Mechanics, vol. 3, no. 1, pp. 90-106, 1970. · Zbl 0251.70013 · doi:10.1007/BF01230435
[8] J. F. San-Juan, L. M. López, and R. López, “MathATESAT: a symbolic-numeric environment in astrodynamics and celestial mechanics,” Lecture Notes in Computer Science, vol. 6783, no. 2, pp. 436-449, 2011. · Zbl 05915390 · doi:10.1007/978-3-642-21887-3_34
[9] J. R. Dormand and P. J. Prince, “Practical runge-kutta processes,” SIAM Journal on Scientific and Statistical Computing, vol. 10, no. 5, pp. 977-989, 1989. · Zbl 0704.65053 · doi:10.1137/0910057
[10] D. A. Dickey and W. A. Fuller, “Distribution of the estimators for autoregressive time series with a unit root,” Journal of the American Statistical Association, vol. 74, no. 366, pp. 427-431, 1979. · Zbl 0413.62075 · doi:10.2307/2286348
[11] C. M. Jarque and A. K. Bera, “Efficient tests for normality, homoscedasticity and serial independence of regression residuals,” Economics Letters, vol. 6, no. 3, pp. 255-259, 1980. · doi:10.1016/0165-1765(80)90024-5
[12] G. M. Ljung and G. E. P. Box, “On a measure of lack of fit in time series models,” Biometrika, vol. 65, no. 2, pp. 297-303, 1978. · Zbl 0386.62079 · doi:10.1093/biomet/65.2.297
[13] R Development Core Team, R: A Language and Environment For Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2011, http://www.Rproject.org/.
[14] K. Chan, “TSA: Time Series Analysis, R package version 0. 98,” 2010, http://CRAN.R-project.org/package=TSA/.
[15] R. J. Hyndman, “Forecast: Forecasting functions for time series, R package age version 2.09,” 2010, http://CRAN.R-project.org/package=forecast/.
[16] A. Trapletti and K. Hornik, “Tseries: Time Series Analysis and Computational Finance, R package version 0.10-27,” 2011, http://CRAN.Rproject.org/package=tseries/.
[17] B. Garfinkel, “Tesseral harmonic perturbations of an artificial satellite,” The Astronomical Journal, vol. 70, pp. 784-786, 1965. · doi:10.1086/109817
[18] J. F. San-Juan and S. Serrano, “ATESAT: revisited and improvements. Analytical theory and numerical validation for a SPOT-like satellite,” Tech. Rep. No. DTS/MPI/MS/MN/2000-013, Centre National d’Etudes Spatiales, Toulouse, France, 2000.
[19] S. Serrano, Teoras Analtícas del Movimiento de un Satélite Artificial alrededor de un Planeta. Ordenación Asintótica del Potencial en el Espacio [Fśico Ph.D.], Universidad de Zaragoza, 2003.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.