×

Instability of a periodic flow in geostrophic and hydrostatic balance. (English) Zbl 1390.76087

Summary: Instability of a flow in geostrophic and hydrostatic balance is investigated using numerical simulations of the fully nonlinear, rotating, stratified Boussinesq equations. Burger numbers less than one and small aspect ratio are considered. Although the model we consider has continuous stratification in the vertical, in terms of phenomenology, the large scale baroclinic instability we find is most closely related to that found in the classical setting of E. T. Eady [“Long waves and cyclone waves”, Tellus 1, No. 3, 33–52 (1949; doi:10.1111/j.2153-3490.1949.tb01265.x)]. Indeed, the growth rate and scale of the most unstable mode scale similarly. The advantage of the model we consider lies in being able to use it in studies of unbalanced processes. Preliminary experimentation suggests that there is a small scale instability at small values of Burger number. This instability is initiated in anticyclonic regions, is likely imbalanced, and likely leads to small scale dissipation. By considering two measures of balance – one based on a wave-vortex decomposition and another based on the quasi-geostrophic omega equation – we study the dependence of imbalance on Rossby number. We, however, find that kinetic energy spectra display slopes consistent with quasi-geostrophic turbulence, with no break in slope at high wavenumbers.

MSC:

76E20 Stability and instability of geophysical and astrophysical flows
76U05 General theory of rotating fluids
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics

Software:

ParaView
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Smith, K. S., The geography of linear baroclinic instability in earth’s oceans, J Marine Res, 65, 5, 655-683, (2007)
[2] Leith, C. E.; Kraichnan, R. H., Predictability of turbulent flows, J Atmospheric Sci, 29, 6, 1041-1058, (1972)
[3] Skamarock, W. C., Evaluating mesoscale NWP models using kinetic energy spectra, Monthly Weather Rev, 132, 12, 3019-3032, (2004)
[4] Vallgren, A.; Deusebio, E.; Lindborg, E., Possible explanation of the atmospheric kinetic and potential energy spectra, Phys Rev Lett, 107, 26, 1-4, (2011)
[5] Bierdel, L.; Friederichs, P.; Bentzien, S., Spatial kinetic energy spectra in the convection-permitting limited-area NWP model COSMO-DE, Meteorol Zeitschrift, 21, 3, 245-258, (2012)
[6] Ngan, K.; Eperon, G. E., Middle atmosphere predictability in a numerical weather prediction model: revisiting the inverse error cascade, Quart J Roy Meteorol Soc, 138, 666, 1366-1378, (2012)
[7] Talbot, C.; Bou-Zeid, E.; Smith, J., Nested mesoscale large-eddy simulations with WRF: performance in real test cases, J Hydrometeorol, 13, 5, 1421-1441, (2012)
[8] Eady, E. T., Long waves and cyclone waves, Tellus, 1, 3, 33-52, (1949)
[9] Simon Guillaume. Dynamique multi-échelle en fluide stratifié tournant, instabilité de cisaillement et cyclone intense. Ph.D. dissertation, École Centrale de Lyon; 2007.
[10] Pieri, A. B.; Cambon, C.; Godeferd, F. S.; Salhi, A., Linearized potential vorticity mode and its role in transition to baroclinic instability, Phys Fluids, 24, 7, 076603, (2012)
[11] Pieri, Alexandre B.; Godeferd, F. S.; Cambon, C.; Salhi, A., Non-geostrophic instabilities of an equilibrium baroclinic state, J Fluid Mech, 734, 535-566, (2013) · Zbl 1294.76148
[12] Salhi, Aziz; Cambon, Claude, Advances in rapid distortion theory: from rotating shear flows to the baroclinic instability, J Appl Mech, 73, 3, 449, (2006) · Zbl 1111.74617
[13] Mamatsashvili, G. R.; Avsarkisov, V. S.; Chagelishvili, G. D.; Chanishvili, R. G.; Kalashnik, M. V., Transient dynamics of nonsymmetric perturbations versus symmetric instability in baroclinic zonal shear flows, J Atmospheric Sci, 67, 9, 2972-2989, (2010)
[14] Rogallo S, Rogallo RS. Numerical experiments in homogeneous turbulence. Technical report 81315, NASA, Moffett Field, CA, USA; 1981.
[15] Charney, J. G.; Stern, M. E., On the stability of internal baroclinic jets in a rotating atmosphere, J Atmospheric Sci, 19, 159-172, (1962)
[16] Taylor, M. A.; Kurien, S.; Eyink, G. L., Direct observation of the intermittency of intense vorticity filaments in turbulence, Phys Rev E, 68, 2, 26310, (2003)
[17] Kurien, S.; Taylor, M. A., Direct numerical simulation of turbulence: data generation and statistical analysis, Los Alamos Sci, 29, 142-151, (2005)
[18] McWilliams, James C.; Gent, Peter R., Intermediate models of planetary circulations in the atmosphere and Ocean, J Atmospheric Sci, 37, 8, 1657-1678, (1980)
[19] Holton, J., An introduction to dynamic meteorology, (2004), Elsevier Academic Press
[20] Charney, J. G., The dynamics of long waves in a baroclinic westerly current, J Meteorol, 4, 5, 136-162, (1947)
[21] Pedlosky, J., Geophysical fluid dynamics, (Springer study edition, (1987), Springer-Verlag) · Zbl 0713.76005
[22] McWilliams, J. C., (Fundamentals of geophysical fluid dynamics, vol. 576, (2007), Cambridge University Press) · Zbl 1233.86003
[23] Smith, K. S.; Vallis, G. K., The scales and equilibration of Midocean eddies: forced-dissipative flow, J Phys Oceanogr, 32, 6, 1699-1720, (2002)
[24] Charney, J. G., Geostrophic turbulence, J Atmospheric Sci, 28, 108, 95, (1971)
[25] Held, I. M.; Pierrehumbert, R. T.; Garner, S. T.; Swanson, K. L., Surface quasi-geostrophic dynamics, J Fluid Mech, 282, 1, 1, (2006) · Zbl 0832.76012
[26] Klein, P.; Hua, B. L.; Lapeyre, G.; Capet, X.; Le Gentil, S.; Sasaki, H., Upper Ocean turbulence from high-resolution 3D simulations, J Phys Oceanogr, 38, 8, 1748, (2008)
[27] Klein, P.; Lapeyre, G.; Roullet, G.; Le Gentil, S.; Sasaki, H., Ocean turbulence at meso and submesoscales: connection between surface and interior dynamics, Geophys Astrophys Fluid Dynam, 105, 4-5, 421-437, (2011)
[28] Sasaki, H.; Klein, P., SSH wavenumber spectra in the north Pacific from a high-resolution realistic simulation, J Phys Oceanogr, 42, 7, 1233-1241, (2012)
[29] Danioux, E.; Vanneste, J.; Klein, P.; Sasaki, H., Spontaneous inertia-gravity-wave generation by surface-intensified turbulence, J Fluid Mech, 699, 153-173, (2012) · Zbl 1248.76031
[30] Nikurashin, M.; Vallis, G. K.; Adcroft, A., Routes to energy dissipation for geostrophic flows in the southern Ocean, Nature Geosci, 6, 1, 48-51, (2012)
[31] Skyllingstad, E. D.; Samelson, R. M., Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. part I: unforced simulations, J Phys Oceanogr, 42, 10, 1701-1716, (2012)
[32] Boccaletti, G.; Ferrari, R.; Fox-Kemper, B., Mixed layer instabilities and restratification, J Phys Oceanogr, 37, 9, 2228-2250, (2007)
[33] Capet, X.; McWilliams, J. C.; Molemaker, M. J.; Shchepetkin, A. F., Mesoscale to submesoscale transition in the California current system. part II: frontal processes, J Phys Oceanogr, 38, 1, 44-64, (2008)
[34] Molemaker, M. J.; McWilliams, J. C.; Capet, X., Balanced and unbalanced routes to dissipation in an equilibrated eady flow, J Fluid Mech, 654, 35-63, (2010) · Zbl 1193.76065
[35] Vanneste, J.; Yavneh, I., Unbalanced instabilities of rapidly rotating stratified shear flows, J Fluid Mech, 584, 373, (2007) · Zbl 1165.76334
[36] McWilliams, James C.; Yavneh, Irad; Cullen, Michael J. P.; Gent, Peter R., The breakdown of large-scale flows in rotating, stratified fluids, Phys Fluids (1994-present), 10, 12, (1998) · Zbl 1185.86016
[37] Henderson, A., Paraview guide a parallel visualization application, (2007), Kitware Inc.
[38] Dritschel, D. G.; Videz, L., A balanced approach to modelling rotating stably stratified geophysical flows, J Fluid Mech, 488, 123-150, (2003) · Zbl 1063.76656
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.