×

Generalized quasilinear approximation of the interaction of convection and mean flows in a thermal annulus. (English) Zbl 1425.76227

Summary: In this paper, we examine the interaction of convection, rotation and mean flows in a thermal annulus. In this system, mean flows are driven by correlations induced by rotation leading to non-trivial Reynolds stresses. The mean flows act back on the convective turbulence acting as a barrier to transport. For this system, we demonstrate that the generalized quasilinear approximation [J. B. Marston et al., “Generalized quasilinear approximation: application to zonal jets”, Phys. Rev. Lett. 116, No. 21, Article ID 214501, 5 p. (2016; doi:10.1103/physrevlett.116.214501)] may provide a much better approximation to the complicated full nonlinear dynamics than the widely used quasilinear approximation. This result will enable the construction of more accurate statistical theories for the description of geophysical and astrophysical flows.

MSC:

76R05 Forced convection
76U05 General theory of rotating fluids

Software:

ASCL; Dedalus
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bauer P, Thorpe A, Brunet G. (2015) The quiet revolution of numerical weather prediction. Nature 525, 47-55. (doi:10.1038/nature14956) · doi:10.1038/nature14956
[2] Lorenz EN. (1967) The nature and theory of the general circulation of the atmosphere, vol. 218. Geneva, Switzerland: World Meteorological Organization.
[3] Vallis GK. (2016) Geophysical fluid dynamics: whence, whither and why? Proc. R. Soc. A 472, 20160140. (doi:10.1098/rspa.2016.0140) · doi:10.1098/rspa.2016.0140
[4] Tobias S, Dagon K, Marston J. (2011) Astrophysical fluid dynamics via direct statistical simulation. Astrophys. J. 727, 127. (doi:10.1088/0004-637X/727/2/127) · doi:10.1088/0004-637X/727/2/127
[5] Frisch U. (1995) Turbulence: the legacy of AN Kolmogorov. Cambridge, UK: Cambridge University Press. · Zbl 0832.76001
[6] Marston JB, Qi W, Tobias SM. (2018) Direct statistical simulation of a jet. In Zonal jets: phenomenology, genesis, physics (eds Galperin B, Read PL). Cambridge, UK: Cambridge University Press.
[7] Squire J, Bhattacharjee A. (2015) Statistical simulation of the magnetorotational dynamo. Phys. Rev. Lett. 114, 085002. (doi:10.1103/PhysRevLett.114.085002) · doi:10.1103/PhysRevLett.114.085002
[8] Farrell BF, Ioannou PJ. (2007) Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64, 3652-3665. (doi:10.1175/JAS4016.1) · doi:10.1175/JAS4016.1
[9] Constantinou NC, Farrell BF, Ioannou PJ. (2013) Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory. J. Atmos. Sci. 71, 1818-1842. (doi:10.1175/jas-d-13-076.1) · doi:10.1175/jas-d-13-076.1
[10] Bouchet F, Marston JB, Tangarife T. (2018) Fluctuations and large deviations of Reynolds stresses in zonal jet dynamics. Phys. Fluids 30, 015110. (doi:10.1063/1.4990509) · doi:10.1063/1.4990509
[11] Marston J, Conover E, Schneider T. (2008) Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65, 1955-1966. (doi:10.1175/2007JAS2510.1) · doi:10.1175/2007JAS2510.1
[12] Tobias S, Marston J. (2013) Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett. 110, 104502. (doi:10.1103/PhysRevLett.110.104502) · doi:10.1103/PhysRevLett.110.104502
[13] Bakas NA, Ioannou PJ. (2013) Emergence of large scale structure in barotropic β-plane turbulence. Phys. Rev. Lett. 110, 224501. (doi:10.1103/PhysRevLett.110.224501) · doi:10.1103/PhysRevLett.110.224501
[14] Allawala A, Tobias SM, Marston JB. (2017) Dimensional reduction of direct statistical simulation. (https://arxiv.org/abs/1708.07805).
[15] Marston JB, Chini GP, Tobias SM. (2016) Generalized quasilinear approximation: application to zonal jets. Phys. Rev. Lett. 116, 214501. (doi:10.1103/PhysRevLett.116.214501) · doi:10.1103/PhysRevLett.116.214501
[16] Child A, Hollerbach R, Marston B, Tobias S. (2016) Generalised quasilinear approximation of the helical magnetorotational instability. J. Plasma Phys. 82, 905820302. (doi:10.1017/s0022377816000556) · doi:10.1017/s0022377816000556
[17] Tobias SM, Marston JB. (2017) Three-dimensional rotating Couette flow via the generalised quasilinear approximation. J. Fluid Mech. 810, 412-428. (doi:10.1017/jfm.2016.727) · Zbl 1383.76271 · doi:10.1017/jfm.2016.727
[18] Busse FH. (1976) A simple model of convection in the Jovian atmosphere. Icarus 29, 255-260. (doi:10.1016/0019-1035(76)90053-1) · doi:10.1016/0019-1035(76)90053-1
[19] Brummell NH, Hart JE. (1993) High Rayleigh number b-convection. Geophys. Astrophys. Fluid Dyn. 68, 85-114. (doi:10.1080/03091929308203563) · doi:10.1080/03091929308203563
[20] Rotvig J, Jones CA. (2006) Multiple jets and bursting in the rapidly rotating convecting two-dimensional annulus model with nearly plane-parallel boundaries. J. Fluid Mech. 567, 117-140. (doi:10.1017/S0022112006002254) · Zbl 1177.76452 · doi:10.1017/S0022112006002254
[21] Burns KJ, Vasil GM, Oishi JS, Lecoanet D, Brown B. (2016) Dedalus: flexible framework for spectrally solving differential equations. Astrophysics Source Code Library.
[22] Guervilly C, Cardin P. (2016) Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model. J. Fluid Mech. 808, 61-89. (doi:10.1017/jfm.2016.631) · Zbl 1383.76546 · doi:10.1017/jfm.2016.631
[23] Jones CA, Rotvig J, Abdulrahman A. (2003) Multiple jets and zonal flow on Jupiter. Geophys. Res. Lett. 30, 1731. (doi:10.1029/2003gl016980) · doi:10.1029/2003gl016980
[24] Currie LK, Tobias SM. (2016) Mean flow generation in rotating anelastic two-dimensional convection. Phys. Fluids 28, 017101. (doi:10.1063/1.4939300) · doi:10.1063/1.4939300
[25] Tobias SM. (1997) The solar cycle: parity interactions and amplitude modulation. Astron. Astrophys. 322, 1007-1017.
[26] Kobayashi S, Gürcan OD, Diamond PH. (2015) Direct identification of predator-prey dynamics in gyrokinetic simulations. Phys. Plasmas 22, 090702. (doi:10.1063/1.4930127) · doi:10.1063/1.4930127
[27] Busse FH, Simitev RD. (2006) Parameter dependences of convection-driven dynamos in rotating spherical fluid shells. Geophys. Astrophys. Fluid Dyn. 100, 341-361. (doi:10.1080/03091920600784873) · Zbl 1206.76056 · doi:10.1080/03091920600784873
[28] Oishi JS, Mac Low MM. (2011) Magnetorotational turbulence transports angular momentum in stratified disks with low magnetic Prandtl number but magnetic Reynolds number above a critical value. Astrophys. J. 740, 18. (doi:10.1088/0004-637X/740/1/18) · doi:10.1088/0004-637X/740/1/18
[29] Kraichnan RH. (1985) Decimated amplitude equations in turbulence dynamics. In Theoretical approaches to turbulence (eds Dwoyer DL, Hussaini MY, Voight RG), pp. 91-135. New York, NY: Springer.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.