Zhang, Xinyun; Zhong, Wenmin Exact Diophantine approximation of real numbers by \(\beta\)-expansions. (English) Zbl 07896606 Discrete Contin. Dyn. Syst. 44, No. 9, 2684-2696 (2024). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{X. Zhang} and \textit{W. Zhong}, Discrete Contin. Dyn. Syst. 44, No. 9, 2684--2696 (2024; Zbl 07896606) Full Text: DOI
Li, Rao; Lü, Fan; Zhou, Li Run-length function of the Bolyai-Rényi expansion of real numbers. (English) Zbl 07893382 Czech. Math. J. 74, No. 1, 319-335 (2024). MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{R. Li} et al., Czech. Math. J. 74, No. 1, 319--335 (2024; Zbl 07893382) Full Text: DOI
Moroz, Mykola Representation of real numbers by Perron series, their geometry, and some applications. (English. Ukrainian original) Zbl 1540.11101 J. Math. Sci., New York 279, No. 3, 384-399 (2024); translation from Neliniĭni Kolyvannya 26, No. 2, 247-260 (2023). MSC: 11K55 11K50 28A80 PDFBibTeX XMLCite \textit{M. Moroz}, J. Math. Sci., New York 279, No. 3, 384--399 (2024; Zbl 1540.11101); translation from Neliniĭni Kolyvannya 26, No. 2, 247--260 (2023) Full Text: DOI
Serbenyuk, Symon One example of singular representations of real numbers from the unit interval. (English) Zbl 1540.11102 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 50, No. 1, 96-103 (2024). MSC: 11K55 26A27 11J72 11H71 PDFBibTeX XMLCite \textit{S. Serbenyuk}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 50, No. 1, 96--103 (2024; Zbl 1540.11102) Full Text: DOI arXiv
Wang, Jin-Feng; Zhou, Qing-Long Exceptional sets related to the product of consecutive digits in Lüroth expansions. (English) Zbl 07857957 Publ. Math. Debr. 104, No. 3-4, 279-314 (2024). MSC: 11K55 28A80 11J83 PDFBibTeX XMLCite \textit{J.-F. Wang} and \textit{Q.-L. Zhou}, Publ. Math. Debr. 104, No. 3--4, 279--314 (2024; Zbl 07857957) Full Text: DOI
Fang, Lulu; Shang, Lei On the exact rate of convergence of digits in Engel expansions. (English) Zbl 07852346 J. Math. Anal. Appl. 531, No. 1, Part 1, Article ID 127726, 16 p. (2024). Reviewer: Jörg Neunhäuserer (Goslar) MSC: 11K55 28A80 28A75 PDFBibTeX XMLCite \textit{L. Fang} and \textit{L. Shang}, J. Math. Anal. Appl. 531, No. 1, Part 1, Article ID 127726, 16 p. (2024; Zbl 07852346) Full Text: DOI
Jiang, Zhu; Xu, Jian Hausdorff dimension of certain sets arising by the maximal run-length function over factorial language. (English) Zbl 07848678 J. Math. Anal. Appl. 538, No. 1, Article ID 128325, 20 p. (2024). Reviewer: Jörg Neunhäuserer (Goslar) MSC: 11K55 28A78 PDFBibTeX XMLCite \textit{Z. Jiang} and \textit{J. Xu}, J. Math. Anal. Appl. 538, No. 1, Article ID 128325, 20 p. (2024; Zbl 07848678) Full Text: DOI
Peng, Liuqing; Wu, Jun; Xu, Jian Hausdorff dimension of certain sets related to random \(\alpha \beta\)-orbits which are not dense. (English) Zbl 07841164 J. Number Theory 261, 22-35 (2024). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 11J71 28A80 PDFBibTeX XMLCite \textit{L. Peng} et al., J. Number Theory 261, 22--35 (2024; Zbl 07841164) Full Text: DOI
Serbenyuk, S. Singular modifications of a classical function. (English) Zbl 07829366 Acta Math. Hung. 172, No. 1, 206-222 (2024). MSC: 11K55 11J72 26A27 11B34 39B22 39B72 26A30 11B34 PDFBibTeX XMLCite \textit{S. Serbenyuk}, Acta Math. Hung. 172, No. 1, 206--222 (2024; Zbl 07829366) Full Text: DOI arXiv
Zhang, Zhenliang; Liao, Xu; Tan, Xiaoyan The convergence exponent and the well approximated sets for Lüroth expansion. (English) Zbl 07814102 J. Math. Anal. Appl. 535, No. 1, Article ID 128217, 15 p. (2024). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 28A78 PDFBibTeX XMLCite \textit{Z. Zhang} et al., J. Math. Anal. Appl. 535, No. 1, Article ID 128217, 15 p. (2024; Zbl 07814102) Full Text: DOI
Song, Ziheng Hausdorff dimension of some sets in the theory of continued beta-fractions and its generalized continued fractions. (English) Zbl 1532.11107 J. Math. Anal. Appl. 535, No. 1, Article ID 128120, 25 p. (2024). MSC: 11K55 11K50 11A55 28A80 PDFBibTeX XMLCite \textit{Z. Song}, J. Math. Anal. Appl. 535, No. 1, Article ID 128120, 25 p. (2024; Zbl 1532.11107) Full Text: DOI
Hussain, Mumtaz; Shulga, Nikita Hausdorff dimension for sets of continued fractions of formal Laurent series. (English) Zbl 07814051 Finite Fields Appl. 95, Article ID 102377, 29 p. (2024). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 11J61 11J70 11K50 28A78 PDFBibTeX XMLCite \textit{M. Hussain} and \textit{N. Shulga}, Finite Fields Appl. 95, Article ID 102377, 29 p. (2024; Zbl 07814051) Full Text: DOI OA License
Hare, Kevin G.; Sidorov, Nikita The Minkowski sum of linear Cantor sets. (English) Zbl 07810304 Acta Arith. 212, No. 2, 173-193 (2024). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 11A63 PDFBibTeX XMLCite \textit{K. G. Hare} and \textit{N. Sidorov}, Acta Arith. 212, No. 2, 173--193 (2024; Zbl 07810304) Full Text: DOI arXiv OA License
Wu, Yu-Feng Maximal run-length function with constraints: a generalization of the Erdős-Rényi limit theorem and the exceptional sets. (English) Zbl 07802695 Monatsh. Math. 203, No. 2, 509-521 (2024). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 11A63 PDFBibTeX XMLCite \textit{Y.-F. Wu}, Monatsh. Math. 203, No. 2, 509--521 (2024; Zbl 07802695) Full Text: DOI arXiv
Li, Rao; Lü, Fan Run-length function of the beta-expansion of a fixed real number. (English) Zbl 1540.11100 J. Number Theory 256, 55-78 (2024). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{R. Li} and \textit{F. Lü}, J. Number Theory 256, 55--78 (2024; Zbl 1540.11100) Full Text: DOI
Das, Tushar; Fishman, Lior; Simmons, David; Urbański, Mariusz A variational principle in the parametric geometry of numbers. (English) Zbl 07794565 Adv. Math. 437, Article ID 109435, 130 p. (2024). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 11J13 28A80 28A78 37A15 37A17 91A05 91A44 PDFBibTeX XMLCite \textit{T. Das} et al., Adv. Math. 437, Article ID 109435, 130 p. (2024; Zbl 07794565) Full Text: DOI arXiv OA License
Song, Kunkun; Tan, Xiaoyan; Zhang, Zhenliang Irrationality exponent and convergence exponent in continued fraction expansions. (English) Zbl 1540.11103 Nonlinearity 37, No. 2, Article ID 025014, 17 p. (2024). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{K. Song} et al., Nonlinearity 37, No. 2, Article ID 025014, 17 p. (2024; Zbl 1540.11103) Full Text: DOI
Tan, Bo; Zhou, Qing-Long Metrical properties of the large products of partial quotients in continued fractions. (English) Zbl 1540.11104 Nonlinearity 37, No. 2, Article ID 025008, 28 p. (2024). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 11J83 PDFBibTeX XMLCite \textit{B. Tan} and \textit{Q.-L. Zhou}, Nonlinearity 37, No. 2, Article ID 025008, 28 p. (2024; Zbl 1540.11104) Full Text: DOI
Zhao, Xuan; Shen, Luming Localized growth speed of the digits in Engel expansions. (English) Zbl 1535.11113 J. Math. Anal. Appl. 530, No. 2, Article ID 127657, 9 p. (2024). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{X. Zhao} and \textit{L. Shen}, J. Math. Anal. Appl. 530, No. 2, Article ID 127657, 9 p. (2024; Zbl 1535.11113) Full Text: DOI
Garrity, Thomas; Duke, Jacob Lehmann Ergodicity and Algebraticity of the Fast and Slow Triangle Maps. arXiv:2409.05822 Preprint, arXiv:2409.05822 [math.DS] (2024). MSC: 11K55 11J70 11R04 28D99 BibTeX Cite \textit{T. Garrity} and \textit{J. L. Duke}, ``Ergodicity and Algebraticity of the Fast and Slow Triangle Maps'', Preprint, arXiv:2409.05822 [math.DS] (2024) Full Text: arXiv OA License
Lima, Davi; Espinosa, Alex Zamudio Counting and Hausdorff measures for integers and \(p\)-adic integers. arXiv:2408.02967 Preprint, arXiv:2408.02967 [math.NT] (2024). MSC: 11K55 11N45 BibTeX Cite \textit{D. Lima} and \textit{A. Z. Espinosa}, ``Counting and Hausdorff measures for integers and $p$-adic integers'', Preprint, arXiv:2408.02967 [math.NT] (2024) Full Text: arXiv OA License
Xiao, Zubiao; Jia, Hongwei; Yin, Zhengyu Scaled packing pressures on subsets for amenable group actions. arXiv:2407.13202 Preprint, arXiv:2407.13202 [math.DS] (2024). MSC: 11K55 28D20 37A15 BibTeX Cite \textit{Z. Xiao} et al., ``Scaled packing pressures on subsets for amenable group actions'', Preprint, arXiv:2407.13202 [math.DS] (2024) Full Text: arXiv OA License
Song, Kunkun; Zhang, Mengjie Multifractal analysis of the convergence exponents for the digits in \(d\)-decaying Gauss like dynamical systems. arXiv:2407.00914 Preprint, arXiv:2407.00914 [math.DS] (2024). MSC: 11K55 28A80 BibTeX Cite \textit{K. Song} and \textit{M. Zhang}, ``Multifractal analysis of the convergence exponents for the digits in $d$-decaying Gauss like dynamical systems'', Preprint, arXiv:2407.00914 [math.DS] (2024) Full Text: arXiv OA License
Neunhäuserer, Jörg A new family of expansions of real numbers. arXiv:2406.10919 Preprint, arXiv:2406.10919 [math.DS] (2024). MSC: 11K55 37A44 28A80 26A30 BibTeX Cite \textit{J. Neunhäuserer}, ``A new family of expansions of real numbers'', Preprint, arXiv:2406.10919 [math.DS] (2024) Full Text: arXiv OA License
Brown-Sarre, Adam; Robert, Gerardo González; Hussain, Mumtaz Measure theoretic properties of large products of consecutive partial quotients. arXiv:2405.10538 Preprint, arXiv:2405.10538 [math.NT] (2024). MSC: 11K55 11J83 28A80 BibTeX Cite \textit{A. Brown-Sarre} et al., ``Measure theoretic properties of large products of consecutive partial quotients'', Preprint, arXiv:2405.10538 [math.NT] (2024) Full Text: arXiv OA License
Ahn, Min Woong Hausdorff dimension of the exceptional set of the law of large numbers in Pierce expansions. arXiv:2405.02174 Preprint, arXiv:2405.02174 [math.NT] (2024). MSC: 11K55 26A18 28A80 37E05 BibTeX Cite \textit{M. W. Ahn}, ``Hausdorff dimension of the exceptional set of the law of large numbers in Pierce expansions'', Preprint, arXiv:2405.02174 [math.NT] (2024) Full Text: arXiv OA License
Ahn, Min Woong Exceptional sets to Shallit’s law of leap years in Pierce expansions. arXiv:2404.18855 Preprint, arXiv:2404.18855 [math.NT] (2024). MSC: 11K55 28A80 85A99 BibTeX Cite \textit{M. W. Ahn}, ``Exceptional sets to Shallit's law of leap years in Pierce expansions'', Preprint, arXiv:2404.18855 [math.NT] (2024) Full Text: arXiv OA License
Serbenyuk, Symon Cantor series expansions of rational numbers. (English) Zbl 07894545 Commun. Math. 31, No. 1, 393-407 (2023). Reviewer: Jaroslav Hančl (Ostrava) MSC: 11K55 11J72 26A30 PDFBibTeX XMLCite \textit{S. Serbenyuk}, Commun. Math. 31, No. 1, 393--407 (2023; Zbl 07894545) Full Text: DOI arXiv OA License
Pratsiovytyi, M. V.; Lysenko, I. M.; Maslova, Yu. P.; Trebenko, O. O. \(G\)-representation of real numbers and some of its applications. (English. Ukrainian original) Zbl 1532.11106 J. Math. Sci., New York 277, No. 2, 298-310 (2023); translation from Neliniĭni Kolyvannya 25, No. 4, 377-387 (2022). MSC: 11K55 PDFBibTeX XMLCite \textit{M. V. Pratsiovytyi} et al., J. Math. Sci., New York 277, No. 2, 298--310 (2023; Zbl 1532.11106); translation from Neliniĭni Kolyvannya 25, No. 4, 377--387 (2022) Full Text: DOI
Pratsiovytyĭ, M. V.; Bondarenko, O. I.; Vasylenko, N. M.; Lysenko, I. M. Infinite-symbol \(B\)-representation of real numbers and some of its applications. (Ukrainian. English summary) Zbl 1538.11144 Bukovyn. Mat. Zh. 11, No. 1, 94-105 (2023). MSC: 11K55 PDFBibTeX XMLCite \textit{M. V. Pratsiovytyĭ} et al., Bukovyn. Mat. Zh. 11, No. 1, 94--105 (2023; Zbl 1538.11144) Full Text: DOI OA License
Baranovs’kyĭ, O. M.; Get’man, B. I.; Pratsiovytyĭ, M. V. Cylindrical sets of E-representation of numbers and fractal Hausdorff-Besicovitch dimension. (Ukrainian. English summary) Zbl 1538.11142 Bukovyn. Mat. Zh. 11, No. 1, 63-70 (2023). MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{O. M. Baranovs'kyĭ} et al., Bukovyn. Mat. Zh. 11, No. 1, 63--70 (2023; Zbl 1538.11142) Full Text: DOI OA License
Baker, Simon; Zou, Yuru Metric results for numbers with multiple \(q\)-expansions. (English) Zbl 07754865 J. Fractal Geom. 10, No. 3-4, 243-266 (2023). Reviewer: Wolfgang Steiner (Paris) MSC: 11K55 11A63 28A80 37B10 PDFBibTeX XMLCite \textit{S. Baker} and \textit{Y. Zou}, J. Fractal Geom. 10, No. 3--4, 243--266 (2023; Zbl 07754865) Full Text: DOI arXiv
Coons, Michael; Evans, James; Groth, Zachary; Mañibo, Neil Zaremba, Salem and the fractal nature of ghost distributions. (English) Zbl 07731648 Bull. Aust. Math. Soc. 107, No. 3, 374-389 (2023). Reviewer: Jean-Paul Allouche (Paris) MSC: 11K55 11B85 28A80 PDFBibTeX XMLCite \textit{M. Coons} et al., Bull. Aust. Math. Soc. 107, No. 3, 374--389 (2023; Zbl 07731648) Full Text: DOI
Wang, Xiaoqiong; Li, Rao Approximation orders of a real number in a family of beta-dynamical systems. (English) Zbl 1532.11108 Fractals 31, No. 5, Article ID 2350048, 10 p. (2023). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{X. Wang} and \textit{R. Li}, Fractals 31, No. 5, Article ID 2350048, 10 p. (2023; Zbl 1532.11108) Full Text: DOI
Langeveld, N.; Samuel, T. Intermediate \(\beta\)-shifts as greedy \(\beta\)-shifts with a hole. (English) Zbl 1538.11143 Acta Math. Hung. 170, No. 1, 269-301 (2023). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 11A63 68R15 26A30 28D05 37B10 37E05 37E15 PDFBibTeX XMLCite \textit{N. Langeveld} and \textit{T. Samuel}, Acta Math. Hung. 170, No. 1, 269--301 (2023; Zbl 1538.11143) Full Text: DOI arXiv
Zhang, Mengjie; Wang, Weiliang On Lüroth expansions in which the largest digit grows with slowly increasing speed. (English) Zbl 1528.11067 Bull. Aust. Math. Soc. 107, No. 2, 204-214 (2023). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{M. Zhang} and \textit{W. Wang}, Bull. Aust. Math. Soc. 107, No. 2, 204--214 (2023; Zbl 1528.11067) Full Text: DOI
Hussain, Mumtaz; Wang, Weiliang Higher-dimensional shrinking target problem for beta dynamical systems. (English) Zbl 1522.11081 J. Aust. Math. Soc. 114, No. 3, 289-311 (2023). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 11J83 11K60 37C45 PDFBibTeX XMLCite \textit{M. Hussain} and \textit{W. Wang}, J. Aust. Math. Soc. 114, No. 3, 289--311 (2023; Zbl 1522.11081) Full Text: DOI arXiv
Berthé, Valérie; Cesaratto, Eda; Rotondo, Pablo; Safe, Martín D. Lochs-type theorems beyond positive entropy. (English) Zbl 1529.11094 Monatsh. Math. 200, No. 4, 737-779 (2023). Reviewer: Simon Kristensen (Aarhus) MSC: 11K55 11K50 11B57 28D20 PDFBibTeX XMLCite \textit{V. Berthé} et al., Monatsh. Math. 200, No. 4, 737--779 (2023; Zbl 1529.11094) Full Text: DOI arXiv HAL
Serbenyuk, Symon Some types of numeral systems and their modeling. (English) Zbl 1521.11050 J. Anal. 31, No. 1, 149-177 (2023). Reviewer: Alexey Ustinov (Khabarovsk) MSC: 11K55 26A27 11J72 11H71 68P30 94B75 94B27 PDFBibTeX XMLCite \textit{S. Serbenyuk}, J. Anal. 31, No. 1, 149--177 (2023; Zbl 1521.11050) Full Text: DOI arXiv
Koivusalo, Henna; Liao, Lingmin; Persson, Tomas Uniform random covering problems. (English) Zbl 1518.11059 Int. Math. Res. Not. 2023, No. 1, 455-481 (2023). Reviewer: Enrico Zoli (Faenza) MSC: 11K55 37A44 37A46 PDFBibTeX XMLCite \textit{H. Koivusalo} et al., Int. Math. Res. Not. 2023, No. 1, 455--481 (2023; Zbl 1518.11059) Full Text: DOI arXiv OA License
Wu, Yu-Feng Inhomogeneous and simultaneous Diophantine approximation in beta dynamical systems. (English) Zbl 1510.11130 J. Math. Anal. Appl. 519, No. 1, Article ID 126781, 18 p. (2023). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{Y.-F. Wu}, J. Math. Anal. Appl. 519, No. 1, Article ID 126781, 18 p. (2023; Zbl 1510.11130) Full Text: DOI arXiv
Imbierski, Jonny; Kalle, Charlene; Mohammadpour, Reza Besicovitch-Eggleston sets for finite GLS number systems with redundancy. arXiv:2310.15265 Preprint, arXiv:2310.15265 [math.DS] (2023). MSC: 11K55 28A80 37D35 BibTeX Cite \textit{J. Imbierski} et al., ``Besicovitch-Eggleston sets for finite GLS number systems with redundancy'', Preprint, arXiv:2310.15265 [math.DS] (2023) Full Text: arXiv OA License
Ahn, Min Woong Hausdorff dimensions in Pierce expansions. arXiv:2304.14162 Preprint, arXiv:2304.14162 [math.NT] (2023). MSC: 11K55 28A80 BibTeX Cite \textit{M. W. Ahn}, ``Hausdorff dimensions in Pierce expansions'', Preprint, arXiv:2304.14162 [math.NT] (2023) Full Text: DOI arXiv OA License
Yuan, Na; Wang, ShuaiLing Modified shrinking target problem for Matrix Transformations of Tori. arXiv:2304.07532 Preprint, arXiv:2304.07532 [math.DS] (2023). MSC: 11K55 37C45 28A80 BibTeX Cite \textit{N. Yuan} and \textit{S. Wang}, ``Modified shrinking target problem for Matrix Transformations of Tori'', Preprint, arXiv:2304.07532 [math.DS] (2023) Full Text: arXiv OA License
Tan, Bo; Zhou, Qing-Long Metrical properties for the large partial quotients with product forms in continued fractions. arXiv:2303.17140 Preprint, arXiv:2303.17140 [math.NT] (2023). MSC: 11K55 28A80 11J83 BibTeX Cite \textit{B. Tan} and \textit{Q.-L. Zhou}, ``Metrical properties for the large partial quotients with product forms in continued fractions'', Preprint, arXiv:2303.17140 [math.NT] (2023) Full Text: arXiv OA License
Berthé, Valerie; Dajani, Karma; Kalle, Charlene; Krawczyk, Ela; Kuru, Hamide; Thevis, Andrea Rational approximations, multidimensional continued fractions and lattice reduction. arXiv:2303.07777 Preprint, arXiv:2303.07777 [math.NT] (2023). MSC: 11K55 11K50 37A45 BibTeX Cite \textit{V. Berthé} et al., ``Rational approximations, multidimensional continued fractions and lattice reduction'', Preprint, arXiv:2303.07777 [math.NT] (2023) Full Text: arXiv OA License
Tan, Bo; Zhou, Qing-Long Uniform Diophantine approximation and run-length function in continued fractions. arXiv:2301.05855 Preprint, arXiv:2301.05855 [math.NT] (2023). MSC: 11K55 28A80 11J83 BibTeX Cite \textit{B. Tan} and \textit{Q.-L. Zhou}, ``Uniform Diophantine approximation and run-length function in continued fractions'', Preprint, arXiv:2301.05855 [math.NT] (2023) Full Text: arXiv OA License
Prats’iovytyĭ, M. V.; Bondarenko, O. I.; Ratushniak, S. P.; Franchuk, K. V. \(\tilde{Q}\)-representation of real numbers as a generalization of Cantor numeral systems. (Ukrainian. English summary) Zbl 07877835 Mohyla Math. J. 5, 9-18 (2022). MSC: 11K55 11A67 26A30 PDFBibTeX XMLCite \textit{M. V. Prats'iovytyĭ} et al., Mohyla Math. J. 5, 9--18 (2022; Zbl 07877835) Full Text: DOI
Lü, Mei Ying; Xie, Jing Hausdorff dimension of the exceptional set in Engel continued fractions. (Chinese. English summary) Zbl 07822709 Acta Math. Sin., Chin. Ser. 65, No. 6, 1003-1008 (2022). MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{M. Y. Lü} and \textit{J. Xie}, Acta Math. Sin., Chin. Ser. 65, No. 6, 1003--1008 (2022; Zbl 07822709) Full Text: DOI
Giyasi, Azar K.; Mikhaĭlov, Il’ya Petrovich; Chubarikov, Vladimir Nikolaevich On the uniform distribution of remainders in the expression of real numbers over a multiplicative system numbers. (Russian. English summary) Zbl 1523.11141 Chebyshevskiĭ Sb. 23, No. 5(86), 38-44 (2022). MSC: 11K55 PDFBibTeX XMLCite \textit{A. K. Giyasi} et al., Chebyshevskiĭ Sb. 23, No. 5(86), 38--44 (2022; Zbl 1523.11141) Full Text: DOI MNR Link
Attia, Najmeddine On the multifractal analysis of a non-standard branching random walk. (English) Zbl 07672127 Acta Sci. Math. 88, No. 3-4, 697-722 (2022). MSC: 11K55 60G50 PDFBibTeX XMLCite \textit{N. Attia}, Acta Sci. Math. 88, No. 3--4, 697--722 (2022; Zbl 07672127) Full Text: DOI
Serbenyuk, Symon The generalized shifts and rational numbers. (English) Zbl 1527.11063 Tatra Mt. Math. Publ. 82, 9-16 (2022). Reviewer: Simon Kristensen (Aarhus) MSC: 11K55 11J72 PDFBibTeX XMLCite \textit{S. Serbenyuk}, Tatra Mt. Math. Publ. 82, 9--16 (2022; Zbl 1527.11063) Full Text: DOI
Neunhäuserer, Jörg Representations of real numbers induced by probability distributions on \(\mathbb{N}\). (English) Zbl 1514.11047 Tatra Mt. Math. Publ. 82, 1-8 (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 60E05 28A78 28A80 PDFBibTeX XMLCite \textit{J. Neunhäuserer}, Tatra Mt. Math. Publ. 82, 1--8 (2022; Zbl 1514.11047) Full Text: DOI arXiv
Schweiger, Fritz Some results on invariant measures for \(1\)-dimensional maps. (English) Zbl 1514.11048 Tokyo J. Math. 45, No. 2, 361-378 (2022). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 28D05 37A05 PDFBibTeX XMLCite \textit{F. Schweiger}, Tokyo J. Math. 45, No. 2, 361--378 (2022; Zbl 1514.11048) Full Text: DOI Link
Pollicott, M.; Vytnova, P. Hausdorff dimension estimates applied to Lagrange and Markov spectra, Zaremba theory, and limit sets of Fuchsian groups. (English) Zbl 1517.11097 Trans. Am. Math. Soc., Ser. B 9, 1102-1159 (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 11J06 37C30 PDFBibTeX XMLCite \textit{M. Pollicott} and \textit{P. Vytnova}, Trans. Am. Math. Soc., Ser. B 9, 1102--1159 (2022; Zbl 1517.11097) Full Text: DOI arXiv OA License
Moroz, M. P. Gauss-Kuzmin problem for the difference Engel-series representation of real numbers. (English. Ukrainian original) Zbl 1509.11073 Ukr. Math. J. 74, No. 7, 1149-1154 (2022); translation from Ukr. Mat. Zh. 74, No. 7, 1004-1008 (2022). Reviewer: Manuel Hauke (Graz) MSC: 11K55 11J70 11K50 PDFBibTeX XMLCite \textit{M. P. Moroz}, Ukr. Math. J. 74, No. 7, 1149--1154 (2022; Zbl 1509.11073); translation from Ukr. Mat. Zh. 74, No. 7, 1004--1008 (2022) Full Text: DOI
Arauza Rivera, Andrea; Lin, Edwin Bounds on the Hausdorff measure of level-\(N\) Sierpinski gaskets. (English) Zbl 1508.11081 Involve 15, No. 3, 379-391 (2022). Reviewer: Jörg Neunhäuserer (Goslar) MSC: 11K55 28A78 28A80 37F35 PDFBibTeX XMLCite \textit{A. Arauza Rivera} and \textit{E. Lin}, Involve 15, No. 3, 379--391 (2022; Zbl 1508.11081) Full Text: DOI
Li, Yao-Qiang Hausdorff dimension of frequency sets in beta-expansions. (English) Zbl 1507.11069 Math. Z. 302, No. 4, 2059-2076 (2022). Reviewer: Simon Kristensen (Aarhus) MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{Y.-Q. Li}, Math. Z. 302, No. 4, 2059--2076 (2022; Zbl 1507.11069) Full Text: DOI arXiv
Matheus, Carlos; Moreira, Carlos Gustavo; Pollicott, Mark; Vytnova, Polina Hausdorff dimension of Gauss-Cantor sets and two applications to classical Lagrange and Markov spectra. (English) Zbl 1505.11105 Adv. Math. 409, Part B, Article ID 108693, 70 p. (2022). Reviewer: Manuel Hauke (Graz) MSC: 11K55 11J06 11A55 37D35 37M25 PDFBibTeX XMLCite \textit{C. Matheus} et al., Adv. Math. 409, Part B, Article ID 108693, 70 p. (2022; Zbl 1505.11105) Full Text: DOI arXiv
Kalle, Charlene; Verbitskiy, Evgeny; Zeegers, Benthen Random Lochs’ theorem. (English) Zbl 1497.11184 Stud. Math. 267, No. 2, 201-239 (2022). MSC: 11K55 28D20 37A10 60F05 11K60 37H15 37A44 11J83 PDFBibTeX XMLCite \textit{C. Kalle} et al., Stud. Math. 267, No. 2, 201--239 (2022; Zbl 1497.11184) Full Text: DOI arXiv
Neunhäuserer, Jörg On the universality of Somos’ constant. (English) Zbl 1509.11074 Elem. Math. 77, No. 3, 138-141 (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 37A25 PDFBibTeX XMLCite \textit{J. Neunhäuserer}, Elem. Math. 77, No. 3, 138--141 (2022; Zbl 1509.11074) Full Text: DOI arXiv
Falk, Richard S.; Nussbaum, Roger D. Hidden positivity and a new approach to numerical computation of Hausdorff dimension: higher order methods. (English) Zbl 1505.11104 J. Fractal Geom. 9, No. 1-2, 23-72 (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 37C30 65J10 PDFBibTeX XMLCite \textit{R. S. Falk} and \textit{R. D. Nussbaum}, J. Fractal Geom. 9, No. 1--2, 23--72 (2022; Zbl 1505.11104) Full Text: DOI arXiv
Usachev, Alexandr Hausdorff dimension of the set of almost convergent sequences. (English) Zbl 1501.11081 Glasg. Math. J. 64, No. 3, 691-697 (2022). Reviewer: István Gaál (Debrecen) MSC: 11K55 40G99 46B45 47B37 PDFBibTeX XMLCite \textit{A. Usachev}, Glasg. Math. J. 64, No. 3, 691--697 (2022; Zbl 1501.11081) Full Text: DOI
Alcaraz Barrera, Rafael; González Robert, Gerardo Chaotic sets and Hausdorff dimension for Lüroth expansions. (English) Zbl 1494.11066 J. Math. Anal. Appl. 514, No. 2, Article ID 126324, 29 p. (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 11K50 PDFBibTeX XMLCite \textit{R. Alcaraz Barrera} and \textit{G. González Robert}, J. Math. Anal. Appl. 514, No. 2, Article ID 126324, 29 p. (2022; Zbl 1494.11066) Full Text: DOI arXiv
Kalle, Charlene; Maggioni, Marta On approximation by random Lüroth expansions. (English) Zbl 1495.11093 Int. J. Number Theory 18, No. 5, 1013-1046 (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 37A10 60G10 11K60 37H15 37A44 11J83 PDFBibTeX XMLCite \textit{C. Kalle} and \textit{M. Maggioni}, Int. J. Number Theory 18, No. 5, 1013--1046 (2022; Zbl 1495.11093) Full Text: DOI arXiv
Tan, Xiaoyan; Liu, Jia; Zhang, Zhenliang Relative convergence speed of Lüroth expansions and Hausdorff dimension. (English) Zbl 1494.11068 Int. J. Number Theory 18, No. 5, 977-997 (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{X. Tan} et al., Int. J. Number Theory 18, No. 5, 977--997 (2022; Zbl 1494.11068) Full Text: DOI
Zheng, Lixuan; Wu, Min Run-length function for real numbers in \(\beta\)-expansions. (English) Zbl 1492.11120 Fractals 30, No. 3, Article ID 2250033, 12 p. (2022). Reviewer: Takao Komatsu (Hangzhou) MSC: 11K55 11A63 28A80 PDFBibTeX XMLCite \textit{L. Zheng} and \textit{M. Wu}, Fractals 30, No. 3, Article ID 2250033, 12 p. (2022; Zbl 1492.11120) Full Text: DOI
Zhou, Qinglong The growth speed for the product of consecutive digits in Lüroth expansions. (English) Zbl 1493.11113 Monatsh. Math. 198, No. 1, 233-248 (2022). Reviewer: Jan Šustek (Ostrava) MSC: 11K55 28A80 11J83 PDFBibTeX XMLCite \textit{Q. Zhou}, Monatsh. Math. 198, No. 1, 233--248 (2022; Zbl 1493.11113) Full Text: DOI
Vargas, Victor On involution kernels and large deviations principles on \(\beta\)-shifts. (English) Zbl 1506.11106 Discrete Contin. Dyn. Syst. 42, No. 6, 2699-2718 (2022). Reviewer: Jörg Neunhäuserer (Goslar) MSC: 11K55 60F10 11A63 37A44 37A50 37D35 PDFBibTeX XMLCite \textit{V. Vargas}, Discrete Contin. Dyn. Syst. 42, No. 6, 2699--2718 (2022; Zbl 1506.11106) Full Text: DOI arXiv
Lü, Meiying; Zhang, Zhenliang On the increasing partial quotients of continued fractions of points in the plane. (English) Zbl 1500.11062 Bull. Aust. Math. Soc. 105, No. 3, 404-411 (2022). Reviewer: Chryssoula Ganatsiou (Larissa) MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{M. Lü} and \textit{Z. Zhang}, Bull. Aust. Math. Soc. 105, No. 3, 404--411 (2022; Zbl 1500.11062) Full Text: DOI
Chen, Haibo; Wang, Yi; Xiao, Yu Metric properties about Banach averages and super simply normal numbers. (English) Zbl 1485.11120 J. Math. Anal. Appl. 513, No. 2, Article ID 126237, 16 p. (2022). MSC: 11K55 11K16 PDFBibTeX XMLCite \textit{H. Chen} et al., J. Math. Anal. Appl. 513, No. 2, Article ID 126237, 16 p. (2022; Zbl 1485.11120) Full Text: DOI
Saito, Kota Linear equations with two variables in Piatetski-Shapiro sequences. (English) Zbl 1496.11105 Acta Arith. 202, No. 2, 161-171 (2022). Reviewer: Simon Kristensen (Aarhus) MSC: 11K55 11J83 11D04 PDFBibTeX XMLCite \textit{K. Saito}, Acta Arith. 202, No. 2, 161--171 (2022; Zbl 1496.11105) Full Text: DOI arXiv
Zhou, Qing-Long On the distribution of the digits in Lüroth expansions. (English) Zbl 1492.11121 Lith. Math. J. 62, No. 1, 123-132 (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 11J83 PDFBibTeX XMLCite \textit{Q.-L. Zhou}, Lith. Math. J. 62, No. 1, 123--132 (2022; Zbl 1492.11121) Full Text: DOI
Feng, Yan; Zhong, Wenmin On the relative growth rate of the product of consecutive partial quotients in continued fraction expansions of Laurent series. (English) Zbl 1483.11161 Finite Fields Appl. 79, Article ID 101998, 24 p. (2022). MSC: 11K55 11K16 28A78 PDFBibTeX XMLCite \textit{Y. Feng} and \textit{W. Zhong}, Finite Fields Appl. 79, Article ID 101998, 24 p. (2022; Zbl 1483.11161) Full Text: DOI
Austin, Tim A new dynamical proof of the Shmerkin-Wu theorem. (English) Zbl 1487.11076 J. Mod. Dyn. 18, 1-11 (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A50 28A80 37C45 PDFBibTeX XMLCite \textit{T. Austin}, J. Mod. Dyn. 18, 1--11 (2022; Zbl 1487.11076) Full Text: DOI arXiv
Zhou, Qing-long Dimension of exceptional sets arising by the longest block function in Lüroth expansions. (English) Zbl 1483.11165 J. Math. Anal. Appl. 510, No. 2, Article ID 126011, 15 p. (2022). MSC: 11K55 28A80 28A78 PDFBibTeX XMLCite \textit{Q.-l. Zhou}, J. Math. Anal. Appl. 510, No. 2, Article ID 126011, 15 p. (2022; Zbl 1483.11165) Full Text: DOI
Kleptsyn, V.; Pollicott, M.; Vytnova, P. Uniform lower bounds on the dimension of Bernoulli convolutions. (English) Zbl 1494.11067 Adv. Math. 395, Article ID 108090, 55 p. (2022). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{V. Kleptsyn} et al., Adv. Math. 395, Article ID 108090, 55 p. (2022; Zbl 1494.11067) Full Text: DOI arXiv OA License
Pollicott, Mark Maximizing dimension for Bernoulli measures and the Gauss map. arXiv:2204.07794 Preprint, arXiv:2204.07794 [math.DS] (2022). MSC: 11K55 BibTeX Cite \textit{M. Pollicott}, ``Maximizing dimension for Bernoulli measures and the Gauss map'', Preprint, arXiv:2204.07794 [math.DS] (2022) Full Text: arXiv OA License
Ito, Hiroaki Self-duality of multidimensional continued fractions. arXiv:2203.07887 Preprint, arXiv:2203.07887 [math.DS] (2022). MSC: 11K55 BibTeX Cite \textit{H. Ito}, ``Self-duality of multidimensional continued fractions'', Preprint, arXiv:2203.07887 [math.DS] (2022) Full Text: arXiv OA License
Neunhäuserer, Jörg On the dimension of certain sets araising in the base two expansion. arXiv:2201.09641 Preprint, arXiv:2201.09641 [math.DS] (2022). MSC: 11K55 28A80 BibTeX Cite \textit{J. Neunhäuserer}, ``On the dimension of certain sets araising in the base two expansion'', Preprint, arXiv:2201.09641 [math.DS] (2022) Full Text: arXiv OA License
Singh, Maisnam Premkumar; Mangang, Khundrakpam Binod On set of points having same negative beta-expansion and beta-expansion. (English) Zbl 07826636 Bull. Calcutta Math. Soc. 113, No. 2, 117-126 (2021). MSC: 11K55 PDFBibTeX XMLCite \textit{M. P. Singh} and \textit{K. B. Mangang}, Bull. Calcutta Math. Soc. 113, No. 2, 117--126 (2021; Zbl 07826636)
Wang, Wen-Ya; Chen, Hui-Qin; Guo, Zhong-Kai The points with dense orbit under the \(\beta\)-expansions of different bases. (English) Zbl 1498.11167 Chaos Solitons Fractals 146, Article ID 110840, 6 p. (2021). MSC: 11K55 28A80 37A44 PDFBibTeX XMLCite \textit{W.-Y. Wang} et al., Chaos Solitons Fractals 146, Article ID 110840, 6 p. (2021; Zbl 1498.11167) Full Text: DOI
Zamrii, I. V.; Shkapa, V. V.; Vlasyk, H. M. Fundamentals of metric theory of real numbers in their \(\overline{Q_3} \)-representation. (English) Zbl 1484.11166 Mat. Stud. 56, No. 1, 3-19 (2021). MSC: 11K55 28A78 PDFBibTeX XMLCite \textit{I. V. Zamrii} et al., Mat. Stud. 56, No. 1, 3--19 (2021; Zbl 1484.11166) Full Text: DOI
Athreya, Jayadev S.; Athreya, Krishna B. Extrema of Lüroth digits and a zeta function limit relation. (English) Zbl 1496.11104 Integers 21, Paper A96, 10 p. (2021). Reviewer: Simon Kristensen (Aarhus) MSC: 11K55 11B68 11M06 60G70 PDFBibTeX XMLCite \textit{J. S. Athreya} and \textit{K. B. Athreya}, Integers 21, Paper A96, 10 p. (2021; Zbl 1496.11104) Full Text: arXiv Link
Lü, Meiying; Xie, Jing On the fast increasing digits in Lüroth expansions. (English) Zbl 1486.11097 Fractals 29, No. 7, Article ID 2150220, 7 p. (2021). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 PDFBibTeX XMLCite \textit{M. Lü} and \textit{J. Xie}, Fractals 29, No. 7, Article ID 2150220, 7 p. (2021; Zbl 1486.11097) Full Text: DOI
Zhang, Zhenliang; Tan, Xiaoyan The relative convergence speed for Engel expansions and Hausdorff dimension. (English) Zbl 1483.11164 Fractals 29, No. 4, Article ID 2150106, 7 p. (2021). MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{Z. Zhang} and \textit{X. Tan}, Fractals 29, No. 4, Article ID 2150106, 7 p. (2021; Zbl 1483.11164) Full Text: DOI
Matsusaka, Toshiki; Saito, Kota Linear Diophantine equations in Piatetski-Shapiro sequences. (English) Zbl 1490.11079 Acta Arith. 200, No. 1, 91-110 (2021). Reviewer: Simon Kristensen (Aarhus) MSC: 11K55 11D04 PDFBibTeX XMLCite \textit{T. Matsusaka} and \textit{K. Saito}, Acta Arith. 200, No. 1, 91--110 (2021; Zbl 1490.11079) Full Text: DOI arXiv
Uludağ, A. Muhammed On the involution Jimm. (English) Zbl 1483.11163 Papadopoulos, Athanase (ed.), Topology and geometry. A collection of essays dedicated to Vladimir G. Turaev. Berlin: European Mathematical Society. IRMA Lect. Math. Theor. Phys. 33, 561-578 (2021). MSC: 11K55 PDFBibTeX XMLCite \textit{A. M. Uludağ}, IRMA Lect. Math. Theor. Phys. 33, 561--578 (2021; Zbl 1483.11163) Full Text: DOI
Saito, K. Prime-representing functions and Hausdorff dimension. (English) Zbl 1488.11116 Acta Math. Hung. 165, No. 1, 203-207 (2021). Reviewer: Arne Winterhof (Linz) MSC: 11K55 11A41 PDFBibTeX XMLCite \textit{K. Saito}, Acta Math. Hung. 165, No. 1, 203--207 (2021; Zbl 1488.11116) Full Text: DOI arXiv
Serbenyuk, Symon Systems of functional equations and generalizations of certain functions. (English) Zbl 1481.11079 Aequationes Math. 95, No. 5, 801-820 (2021). Reviewer: Florian Pausinger (Belfast) MSC: 11K55 11J72 26A27 11B34 39B22 39B72 26A30 PDFBibTeX XMLCite \textit{S. Serbenyuk}, Aequationes Math. 95, No. 5, 801--820 (2021; Zbl 1481.11079) Full Text: DOI arXiv
Arroyo, Aubin; González Robert, Gerardo Hausdorff dimension of sets of numbers with large Lüroth elements. (English) Zbl 1469.11250 Integers 21, Paper A71, 20 p. (2021). MSC: 11K55 11K50 PDFBibTeX XMLCite \textit{A. Arroyo} and \textit{G. González Robert}, Integers 21, Paper A71, 20 p. (2021; Zbl 1469.11250) Full Text: arXiv Link
Zhou, Qinglong; Song, Teng On the intersections of localized Jarník sets and localized uniformly Jarník sets in continued fractions. (English) Zbl 1479.11133 Arch. Math. 117, No. 4, 385-396 (2021). Reviewer: Jörg Neunhäuserer (Goslar) MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{Q. Zhou} and \textit{T. Song}, Arch. Math. 117, No. 4, 385--396 (2021; Zbl 1479.11133) Full Text: DOI
Shang, Lei; Wu, Min On the exponent of convergence of the digit sequence of Engel series. (English) Zbl 1469.11253 J. Math. Anal. Appl. 504, No. 1, Article ID 125368, 15 p. (2021). MSC: 11K55 28A80 PDFBibTeX XMLCite \textit{L. Shang} and \textit{M. Wu}, J. Math. Anal. Appl. 504, No. 1, Article ID 125368, 15 p. (2021; Zbl 1469.11253) Full Text: DOI arXiv
Yu, Han An improvement on Furstenberg’s intersection problem. (English) Zbl 1479.11132 Trans. Am. Math. Soc. 374, No. 9, 6583-6610 (2021). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A50 28A80 28D05 37C45 PDFBibTeX XMLCite \textit{H. Yu}, Trans. Am. Math. Soc. 374, No. 9, 6583--6610 (2021; Zbl 1479.11132) Full Text: DOI arXiv Link
Lebedev, Pavel Dmitrievich; Uspenskiĭ, Aleksandr Aleksandrovich; Ushakov, Vladimir Nikolaevich Iterative algorithms for minimizing the Hausdorff distance between convex polyhedrons. (Russian. English summary) Zbl 1480.11097 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 57, 142-155 (2021). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K55 28A78 46N10 PDFBibTeX XMLCite \textit{P. D. Lebedev} et al., Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 57, 142--155 (2021; Zbl 1480.11097) Full Text: DOI MNR
Serbenyuk, S. Rational numbers defined in terms of certain generalized series. (English) Zbl 1488.11117 Acta Math. Hung. 164, No. 2, 580-592 (2021). Reviewer: Elijah Liflyand (Ramat-Gan) MSC: 11K55 11J72 26A30 PDFBibTeX XMLCite \textit{S. Serbenyuk}, Acta Math. Hung. 164, No. 2, 580--592 (2021; Zbl 1488.11117) Full Text: DOI arXiv
Ghenciu, Andrei E.; Munday, Sara The Hausdorff dimension spectrum of Renyi-like continued fractions. (English) Zbl 1470.11210 J. Number Theory 228, 359-374 (2021). MSC: 11K55 28A80 37C45 PDFBibTeX XMLCite \textit{A. E. Ghenciu} and \textit{S. Munday}, J. Number Theory 228, 359--374 (2021; Zbl 1470.11210) Full Text: DOI
Dayan, Alberto; Fernández, José L.; González, María J. Hausdorff measures, dyadic approximations, and the Dobiński set. (English) Zbl 1469.11252 Ill. J. Math. 65, No. 2, 515-531 (2021). MSC: 11K55 28A78 30C85 PDFBibTeX XMLCite \textit{A. Dayan} et al., Ill. J. Math. 65, No. 2, 515--531 (2021; Zbl 1469.11252) Full Text: DOI arXiv
Tan, Bo; Zhou, Qinglong Dimension theory of the product of partial quotients in Lüroth expansions. (English) Zbl 1469.11256 Int. J. Number Theory 17, No. 5, 1139-1154 (2021). MSC: 11K55 28A80 11J83 PDFBibTeX XMLCite \textit{B. Tan} and \textit{Q. Zhou}, Int. J. Number Theory 17, No. 5, 1139--1154 (2021; Zbl 1469.11256) Full Text: DOI
Jaerisch, Johannes; Takahasi, Hiroki Mixed multifractal spectra of Birkhoff averages for non-uniformly expanding one-dimensional Markov maps with countably many branches. (English) Zbl 1483.11162 Adv. Math. 385, Article ID 107778, 45 p. (2021). Reviewer: Chryssoula Ganatsiou (Larissa) MSC: 11K55 37D25 37D35 37D40 PDFBibTeX XMLCite \textit{J. Jaerisch} and \textit{H. Takahasi}, Adv. Math. 385, Article ID 107778, 45 p. (2021; Zbl 1483.11162) Full Text: DOI arXiv