Henry, Benoit Approximation of the allelic frequency spectrum in general supercritical branching populations. (English) Zbl 07312679 Stochastic Processes Appl. 132, 192-225 (2021). MSC: 60J80 92D10 60J85 60G51 60K15 60F05 PDF BibTeX XML Cite \textit{B. Henry}, Stochastic Processes Appl. 132, 192--225 (2021; Zbl 07312679) Full Text: DOI
Barczy, Mátyás; Basrak, Bojan; Kevei, Péter; Pap, Gyula; Planinić, Hrvoje Statistical inference of subcritical strongly stationary Galton-Watson processes with regularly varying immigration. (English) Zbl 07312674 Stochastic Processes Appl. 132, 33-75 (2021). MSC: 60J80 62F12 60G55 PDF BibTeX XML Cite \textit{M. Barczy} et al., Stochastic Processes Appl. 132, 33--75 (2021; Zbl 07312674) Full Text: DOI
Bailey, E. C.; Keating, J. P. Moments of moments and branching random walks. (English) Zbl 07308631 J. Stat. Phys. 182, No. 1, Paper No. 20, 24 p. (2021). MSC: 60J80 60B20 PDF BibTeX XML Cite \textit{E. C. Bailey} and \textit{J. P. Keating}, J. Stat. Phys. 182, No. 1, Paper No. 20, 24 p. (2021; Zbl 07308631) Full Text: DOI
Bulinskaya, Ekaterina Vl. Maximum of catalytic branching random walk with regularly varying tails. (English) Zbl 07306256 J. Theor. Probab. 34, No. 1, 141-161 (2021). MSC: 60J80 60F05 PDF BibTeX XML Cite \textit{E. Vl. Bulinskaya}, J. Theor. Probab. 34, No. 1, 141--161 (2021; Zbl 07306256) Full Text: DOI
Mitov, Kosto V. A critical branching process with immigration in varying environments. (English) Zbl 07290487 Stat. Probab. Lett. 168, Article ID 108928, 8 p. (2021). MSC: 60J80 60K35 PDF BibTeX XML Cite \textit{K. V. Mitov}, Stat. Probab. Lett. 168, Article ID 108928, 8 p. (2021; Zbl 07290487) Full Text: DOI
Hou, Wanting; Hong, Wenming Minima of independent time-inhomogeneous random walks. (English) Zbl 07308694 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 3, Article ID 2050021, 13 p. (2020). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{W. Hou} and \textit{W. Hong}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 3, Article ID 2050021, 13 p. (2020; Zbl 07308694) Full Text: DOI
Limnios, Nikolaos; Yarovaya, Elena Diffusion approximation of branching processes in semi-Markov environment. (English) Zbl 07297572 Methodol. Comput. Appl. Probab. 22, No. 4, 1583-1590 (2020). MSC: 60J80 60K15 60K37 60J60 PDF BibTeX XML Cite \textit{N. Limnios} and \textit{E. Yarovaya}, Methodol. Comput. Appl. Probab. 22, No. 4, 1583--1590 (2020; Zbl 07297572) Full Text: DOI
Barczy, Mátyás; Bősze, Zsuzsanna; Pap, Gyula On tail behaviour of stationary second-order Galton-Watson processes with immigration. (English) Zbl 07296196 Mod. Stoch., Theory Appl. 7, No. 3, 315-338 (2020). MSC: 60J80 60G70 PDF BibTeX XML Cite \textit{M. Barczy} et al., Mod. Stoch., Theory Appl. 7, No. 3, 315--338 (2020; Zbl 07296196) Full Text: DOI
Wang, Jing; Zhang, Yuhui Integral-type functionals downward of single death processes. (Chinese. English summary) Zbl 07295027 Chin. J. Appl. Probab. Stat. 36, No. 4, 393-414 (2020). MSC: 60J80 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Y. Zhang}, Chin. J. Appl. Probab. Stat. 36, No. 4, 393--414 (2020; Zbl 07295027) Full Text: DOI
Li, Doudou; Zhang, Mei Limit theorem and parameter estimation for a critical branching process with mixing immigration. (English) Zbl 07295022 Chin. J. Appl. Probab. Stat. 36, No. 4, 331-341 (2020). MSC: 60J80 60F17 60F05 62F10 PDF BibTeX XML Cite \textit{D. Li} and \textit{M. Zhang}, Chin. J. Appl. Probab. Stat. 36, No. 4, 331--341 (2020; Zbl 07295022) Full Text: DOI
Gao, Zhenlong; Zhang, Huili Asymptotic distributions and Berry-Esseen inequalities for Lotka-Nagaev estimator of a Poisson randomly indexed branching process. (English) Zbl 07288764 J. Math. Inequal. 14, No. 3, 735-746 (2020). MSC: 60J80 PDF BibTeX XML Cite \textit{Z. Gao} and \textit{H. Zhang}, J. Math. Inequal. 14, No. 3, 735--746 (2020; Zbl 07288764) Full Text: DOI
Huillet, Thierry E. Statistics of branched populations split into different types. (English) Zbl 07288652 Appl. Appl. Math. 15, No. 2, 764-800 (2020). MSC: 60J80 92D25 PDF BibTeX XML Cite \textit{T. E. Huillet}, Appl. Appl. Math. 15, No. 2, 764--800 (2020; Zbl 07288652) Full Text: Link
Tzioufas, Achillefs Monotonicity of escape probabilities for branching random walks on \(\mathbb{Z}^d\). (English) Zbl 07287587 Stat. Probab. Lett. 167, Article ID 108900, 9 p. (2020). MSC: 60J80 PDF BibTeX XML Cite \textit{A. Tzioufas}, Stat. Probab. Lett. 167, Article ID 108900, 9 p. (2020; Zbl 07287587) Full Text: DOI
Dong, C.; Smadi, C.; Vatutin, V. A. Critical branching processes in random environment and Cauchy domain of attraction. (English) Zbl 07285712 ALEA, Lat. Am. J. Probab. Math. Stat. 17, No. 2, 877-900 (2020). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{C. Dong} et al., ALEA, Lat. Am. J. Probab. Math. Stat. 17, No. 2, 877--900 (2020; Zbl 07285712) Full Text: Link
Cheek, David; Shneer, Seva The empirical mean position of a branching Lévy process. (English) Zbl 07284541 J. Appl. Probab. 57, No. 4, 1252-1259 (2020). MSC: 60J80 60G51 60J25 PDF BibTeX XML Cite \textit{D. Cheek} and \textit{S. Shneer}, J. Appl. Probab. 57, No. 4, 1252--1259 (2020; Zbl 07284541) Full Text: DOI
Braunsteins, Peter; Hautphenne, Sophie The probabilities of extinction in a branching random walk on a strip. (English) Zbl 07284518 J. Appl. Probab. 57, No. 3, 811-831 (2020). MSC: 60J80 60J05 60J22 PDF BibTeX XML Cite \textit{P. Braunsteins} and \textit{S. Hautphenne}, J. Appl. Probab. 57, No. 3, 811--831 (2020; Zbl 07284518) Full Text: DOI
Abraham, Romain; Bouaziz, Aymen; Delmas, Jean-François Very fat geometric Galton-Watson trees. (English) Zbl 07277656 ESAIM, Probab. Stat. 24, 294-314 (2020). MSC: 60J80 60F15 05C05 PDF BibTeX XML Cite \textit{R. Abraham} et al., ESAIM, Probab. Stat. 24, 294--314 (2020; Zbl 07277656) Full Text: DOI
Foss, Sergey; Miyazawa, Masakiyo Tails in a fixed-point problem for a branching process with state-independent immigration. (English) Zbl 07274261 Markov Process. Relat. Fields 26, No. 4, 613-635 (2020). MSC: 60J80 60J05 60K25 60E99 PDF BibTeX XML Cite \textit{S. Foss} and \textit{M. Miyazawa}, Markov Process. Relat. Fields 26, No. 4, 613--635 (2020; Zbl 07274261) Full Text: Link
Li, Zenghu Continuous-state branching processes with immigration. (English) Zbl 07273637 Jiao, Ying (ed.), From probability to finance. Lecture notes of BICMR summer school on financial mathematics, Beijing International Center for Mathematical Research, Beijing, China, May 29 – June 9, 2017. Singapore: Springer (ISBN 978-981-15-1575-0/hbk; 978-981-15-1576-7/ebook). Mathematical Lectures from Peking University, 1-69 (2020). MSC: 60J80 60J85 60H10 60H20 PDF BibTeX XML Cite \textit{Z. Li}, in: From probability to finance. Lecture notes of BICMR summer school on financial mathematics, Beijing International Center for Mathematical Research, Beijing, China, May 29 -- June 9, 2017. Singapore: Springer. 1--69 (2020; Zbl 07273637) Full Text: DOI
Zhu, Yanjiao; Gao, Zhenlong Asymptotic properties of a Poisson randomly indexed branching process. (English) Zbl 07266979 J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 26-30 (2020). MSC: 60J80 62E20 PDF BibTeX XML Cite \textit{Y. Zhu} and \textit{Z. Gao}, J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 26--30 (2020; Zbl 07266979) Full Text: DOI
Beznea, Lucian; Boeangiu, Ana-Maria; Lupaşcu-Stamate, Oana \(h\)-transform of Doob and nonlocal branching processes. (English) Zbl 07262176 Anal. Math. Phys. 10, No. 4, Paper No. 47, 15 p. (2020). MSC: 60J80 60J45 60J35 60J57 47D07 60J25 60J40 31C05 PDF BibTeX XML Cite \textit{L. Beznea} et al., Anal. Math. Phys. 10, No. 4, Paper No. 47, 15 p. (2020; Zbl 07262176) Full Text: DOI
Öz, Mehmet Large deviations for local mass of branching Brownian motion. (English) Zbl 07261918 ALEA, Lat. Am. J. Probab. Math. Stat. 17, No. 2, 711-731 (2020). MSC: 60J80 60F10 92D25 PDF BibTeX XML Cite \textit{M. Öz}, ALEA, Lat. Am. J. Probab. Math. Stat. 17, No. 2, 711--731 (2020; Zbl 07261918) Full Text: Link
Gao, Zhenlong; Wang, Min; Zhang, Huili Deviations for martingale convergence of a branching process with random index. (English) Zbl 07258920 Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3499-3512 (2020). MSC: 60J80 60F10 PDF BibTeX XML Cite \textit{Z. Gao} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3499--3512 (2020; Zbl 07258920) Full Text: DOI
Yanev, Nikolay M.; Stoimenova, Vessela K.; Atanasov, Dimitar V. Stochastic modelling and estimation of COVID-19 population dynamics. (English) Zbl 07258548 C. R. Acad. Bulg. Sci. 73, No. 4, 451-460 (2020). Reviewer: Angela Slavova (Sofia) MSC: 60J80 60F05 60J85 62P10 PDF BibTeX XML Cite \textit{N. M. Yanev} et al., C. R. Acad. Bulg. Sci. 73, No. 4, 451--460 (2020; Zbl 07258548) Full Text: DOI
Bowditch, Adam; Tokushige, Yuki The speed of a biased random walk on a Galton-Watson tree is analytic. (English) Zbl 07252785 Electron. Commun. Probab. 25, Paper No. 65, 11 p. (2020). MSC: 60J80 60K37 60J10 05C81 PDF BibTeX XML Cite \textit{A. Bowditch} and \textit{Y. Tokushige}, Electron. Commun. Probab. 25, Paper No. 65, 11 p. (2020; Zbl 07252785) Full Text: DOI Euclid
Stufler, Benedikt On the maximal offspring in a subcritical branching process. (English) Zbl 07252698 Electron. J. Probab. 25, Paper No. 104, 62 p. (2020). MSC: 60J80 60F17 05C80 PDF BibTeX XML Cite \textit{B. Stufler}, Electron. J. Probab. 25, Paper No. 104, 62 p. (2020; Zbl 07252698) Full Text: DOI Euclid
Logachov, A. V.; Suhov, Y. M.; Vvedenskaya, N. D.; Yambartsev, A. A. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process. (English) Zbl 07251443 Sib. Èlektron. Mat. Izv. 17, 1258-1269 (2020). MSC: 60J80 60F10 PDF BibTeX XML Cite \textit{A. V. Logachov} et al., Sib. Èlektron. Mat. Izv. 17, 1258--1269 (2020; Zbl 07251443) Full Text: DOI
Bulinskaya, E. V. On the maximal displacement of catalytic branching random walk. (English) Zbl 07251433 Sib. Èlektron. Mat. Izv. 17, 1088-1099 (2020). MSC: 60J80 PDF BibTeX XML Cite \textit{E. V. Bulinskaya}, Sib. Èlektron. Mat. Izv. 17, 1088--1099 (2020; Zbl 07251433) Full Text: DOI
Beznea, Lucian; Lupaşcu-Stamate, Oana; Vrabie, Cătălin Ioan Stochastic solutions to evolution equations of non-local branching processes. (English) Zbl 07248585 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 200, Article ID 112021, 17 p. (2020). MSC: 60J80 35J60 60J68 60J45 60J35 47D07 PDF BibTeX XML Cite \textit{L. Beznea} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 200, Article ID 112021, 17 p. (2020; Zbl 07248585) Full Text: DOI
Wang, Jing; Zhang, Yuhui Moments of integral-type downward functionals for single death processes. (English) Zbl 1450.60048 Front. Math. China 15, No. 4, 749-768 (2020). MSC: 60J80 60J60 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Y. Zhang}, Front. Math. China 15, No. 4, 749--768 (2020; Zbl 1450.60048) Full Text: DOI
Bowditch, Adam; Tokushige, Yuki Differentiability of the speed of biased random walks on Galton-Watson trees. (English) Zbl 1450.60047 ALEA, Lat. Am. J. Probab. Math. Stat. 17, No. 1, 609-642 (2020). MSC: 60J80 60K05 60K37 60F17 PDF BibTeX XML Cite \textit{A. Bowditch} and \textit{Y. Tokushige}, ALEA, Lat. Am. J. Probab. Math. Stat. 17, No. 1, 609--642 (2020; Zbl 1450.60047) Full Text: Link
Ferrari, Analía; Groisman, Pablo; Ravishankar, Krishnamurthi Tumor growth, \(R\)-positivity, multitype branching and quasistationarity. (English) Zbl 07239470 J. Stat. Phys. 180, No. 1-6, 427-439 (2020). MSC: 60J80 82C22 92C50 PDF BibTeX XML Cite \textit{A. Ferrari} et al., J. Stat. Phys. 180, No. 1--6, 427--439 (2020; Zbl 07239470) Full Text: DOI
Kistler, Nicola; Schertzer, Adrien; Schmidt, Marius A. Oriented first passage percolation in the mean field limit, 2. The extremal process. (English) Zbl 07236134 Ann. Appl. Probab. 30, No. 2, 788-811 (2020). MSC: 60J80 60G70 82B44 PDF BibTeX XML Cite \textit{N. Kistler} et al., Ann. Appl. Probab. 30, No. 2, 788--811 (2020; Zbl 07236134) Full Text: DOI Euclid
Bertacchi, Daniela; Zucca, Fabio Branching random walks with uncountably many extinction probability vectors. (English) Zbl 07232937 Braz. J. Probab. Stat. 34, No. 2, 426-438 (2020). MSC: 60J80 60K35 PDF BibTeX XML Cite \textit{D. Bertacchi} and \textit{F. Zucca}, Braz. J. Probab. Stat. 34, No. 2, 426--438 (2020; Zbl 07232937) Full Text: DOI Euclid
Bertacchi, Daniela; Rodriguez, Pablo M.; Zucca, Fabio Galton-Watson processes in varying environment and accessibility percolation. (English) Zbl 1446.60059 Braz. J. Probab. Stat. 34, No. 3, 613-628 (2020). MSC: 60J80 60K35 PDF BibTeX XML Cite \textit{D. Bertacchi} et al., Braz. J. Probab. Stat. 34, No. 3, 613--628 (2020; Zbl 1446.60059) Full Text: DOI Euclid
Peres, Yuval; Swan, Andrew Analyticity for rapidly determined properties of Poisson Galton-Watson trees. (English) Zbl 07225536 Electron. Commun. Probab. 25, Paper No. 43, 8 p. (2020). Reviewer: Bastien Mallein (Paris) MSC: 60J80 05C05 PDF BibTeX XML Cite \textit{Y. Peres} and \textit{A. Swan}, Electron. Commun. Probab. 25, Paper No. 43, 8 p. (2020; Zbl 07225536) Full Text: DOI Euclid
Le Gall, Jean-François; Riera, Armand Growth-fragmentation processes in Brownian motion indexed by the Brownian tree. (English) Zbl 07224959 Ann. Probab. 48, No. 4, 1742-1784 (2020). MSC: 60J80 60D05 60J55 60J65 PDF BibTeX XML Cite \textit{J.-F. Le Gall} and \textit{A. Riera}, Ann. Probab. 48, No. 4, 1742--1784 (2020; Zbl 07224959) Full Text: DOI Euclid
Bovier, Anton; Hartung, Lisa From 1 to 6 : a finer analysis of perturbed branching Brownian motion. (English) Zbl 1445.60060 Commun. Pure Appl. Math. 73, No. 7, 1490-1525 (2020). MSC: 60J80 60J65 PDF BibTeX XML Cite \textit{A. Bovier} and \textit{L. Hartung}, Commun. Pure Appl. Math. 73, No. 7, 1490--1525 (2020; Zbl 1445.60060) Full Text: DOI
Berzunza, Gabriel The existence of a giant cluster for percolation on large Crump-Mode-Jagers trees. (English) Zbl 07221659 Adv. Appl. Probab. 52, No. 1, 266-290 (2020). MSC: 60J80 60K35 05C05 PDF BibTeX XML Cite \textit{G. Berzunza}, Adv. Appl. Probab. 52, No. 1, 266--290 (2020; Zbl 07221659) Full Text: DOI
Gao, Zhenlong Notes on large deviations for branching processes indexed by a Poisson process. (English) Zbl 1451.60098 Lith. Math. J. 60, No. 1, 25-28 (2020). MSC: 60J80 60G55 60F10 PDF BibTeX XML Cite \textit{Z. Gao}, Lith. Math. J. 60, No. 1, 25--28 (2020; Zbl 1451.60098) Full Text: DOI
Lebedev, A. V. Erratum to: “Multivariate extremes of random scores of particles in branching processes with max-linear heredity”. (English. Russian original) Zbl 1441.60068 Math. Notes 107, No. 6, 1046 (2020); translation from Mat. Zametki 107, No. 6, 954 (2020). MSC: 60J80 60G70 PDF BibTeX XML Full Text: DOI
Vatutin, V. A.; D’yakonova, E. E. The survival probability for a class of multitype subcritical branching processes in random environment. (English. Russian original) Zbl 07215344 Math. Notes 107, No. 2, 189-200 (2020); translation from Mat. Zametki 107, No. 2, 163-177 (2020). Reviewer: Hans Daduna (Hamburg) MSC: 60J80 60K37 PDF BibTeX XML Cite \textit{V. A. Vatutin} and \textit{E. E. D'yakonova}, Math. Notes 107, No. 2, 189--200 (2020; Zbl 07215344); translation from Mat. Zametki 107, No. 2, 163--177 (2020) Full Text: DOI
Ko, Sung-Seok A nonhomogeneous quasi-birth-death process approach for an \((s,S)\) policy for a perishable inventory system with retrial demands. (English) Zbl 07213091 J. Ind. Manag. Optim. 16, No. 3, 1415-1433 (2020). MSC: 60J80 PDF BibTeX XML Cite \textit{S.-S. Ko}, J. Ind. Manag. Optim. 16, No. 3, 1415--1433 (2020; Zbl 07213091) Full Text: DOI
Černý, Jiří; Drewitz, Alexander Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model. (English) Zbl 1445.60061 Ann. Probab. 48, No. 1, 94-146 (2020). Reviewer: Bastien Mallein (Villetaneuse) MSC: 60J80 60K37 60G70 60F17 82B44 PDF BibTeX XML Cite \textit{J. Černý} and \textit{A. Drewitz}, Ann. Probab. 48, No. 1, 94--146 (2020; Zbl 1445.60061) Full Text: DOI Euclid
Peköz, Erol A.; Röllin, Adrian; Ross, Nathan Exponential and Laplace approximation for occupation statistics of branching random walk. (English) Zbl 1441.60069 Electron. J. Probab. 25, Paper No. 55, 22 p. (2020). MSC: 60J80 60F05 PDF BibTeX XML Cite \textit{E. A. Peköz} et al., Electron. J. Probab. 25, Paper No. 55, 22 p. (2020; Zbl 1441.60069) Full Text: DOI Euclid
Öz, Mehmet On the volume of the shrinking branching Brownian sausage. (English) Zbl 1434.60249 Electron. Commun. Probab. 25, Paper No. 37, 12 p. (2020). MSC: 60J80 60F15 60D05 92D25 PDF BibTeX XML Cite \textit{M. Öz}, Electron. Commun. Probab. 25, Paper No. 37, 12 p. (2020; Zbl 1434.60249) Full Text: DOI Euclid
Lalley, Steven P.; Tang, Si Occupation densities of ensembles of branching random walks. (English) Zbl 1434.60243 Electron. Commun. Probab. 25, Paper No. 12, 13 p. (2020). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{S. P. Lalley} and \textit{S. Tang}, Electron. Commun. Probab. 25, Paper No. 12, 13 p. (2020; Zbl 1434.60243) Full Text: DOI Euclid
Huang, Xiangying; Durrett, Rick The contact process on random graphs and Galton Watson trees. (English) Zbl 1439.60082 ALEA, Lat. Am. J. Probab. Math. Stat. 17, No. 1, 159-182 (2020). MSC: 60J80 60K35 05C80 PDF BibTeX XML Cite \textit{X. Huang} and \textit{R. Durrett}, ALEA, Lat. Am. J. Probab. Math. Stat. 17, No. 1, 159--182 (2020; Zbl 1439.60082) Full Text: Link
Dadoun, Benjamin Self-similar growth fragmentations as scaling limits of Markov branching processes. (English) Zbl 1445.60062 J. Theor. Probab. 33, No. 2, 590-610 (2020). Reviewer: Matthias Meiners (Innsbruck) MSC: 60J80 60F17 PDF BibTeX XML Cite \textit{B. Dadoun}, J. Theor. Probab. 33, No. 2, 590--610 (2020; Zbl 1445.60062) Full Text: DOI
Giorno, Virginia; Nobile, Amelia G. On a class of birth-death processes with time-varying intensity functions. (English) Zbl 07200796 Appl. Math. Comput. 379, Article ID 125255, 23 p. (2020). MSC: 60J80 60J28 65C40 PDF BibTeX XML Cite \textit{V. Giorno} and \textit{A. G. Nobile}, Appl. Math. Comput. 379, Article ID 125255, 23 p. (2020; Zbl 07200796) Full Text: DOI
Dyakonova, Elena; Li, Doudou; Vatutin, Vladimir; Zhang, Mei Branching processes in a random environment with immigration stopped at zero. (English) Zbl 1434.60240 J. Appl. Probab. 57, No. 1, 237-249 (2020). MSC: 60J80 PDF BibTeX XML Cite \textit{E. Dyakonova} et al., J. Appl. Probab. 57, No. 1, 237--249 (2020; Zbl 1434.60240) Full Text: DOI
Kersting, Götz A unifying approach to branching processes in a varying environment. (English) Zbl 1434.60242 J. Appl. Probab. 57, No. 1, 196-220 (2020). MSC: 60J80 60F05 PDF BibTeX XML Cite \textit{G. Kersting}, J. Appl. Probab. 57, No. 1, 196--220 (2020; Zbl 1434.60242) Full Text: DOI
Marzouk, Cyril Scaling limits of discrete snakes with stable branching. (English. French summary) Zbl 1434.60248 Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 1, 502-523 (2020). MSC: 60J80 60F17 60G50 PDF BibTeX XML Cite \textit{C. Marzouk}, Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 1, 502--523 (2020; Zbl 1434.60248) Full Text: DOI Euclid
González, Miguel; Martínez, Rodrigo; Minuesa, Carmen; del Puerto, Inés Approximate Bayesian computation in controlled branching processes: the role of summary statistics. (English) Zbl 1437.60054 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 116, 29 p. (2020). MSC: 60J80 62F15 PDF BibTeX XML Cite \textit{M. González} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 3, Paper No. 116, 29 p. (2020; Zbl 1437.60054) Full Text: DOI
Li, Junping; Cheng, Lan; Pakes, Anthony G.; Chen, Anyue; Li, Liuyan Large deviation rates for Markov branching processes. (English) Zbl 1434.60244 Anal. Appl., Singap. 18, No. 3, 447-468 (2020). MSC: 60J80 60F10 60J27 PDF BibTeX XML Cite \textit{J. Li} et al., Anal. Appl., Singap. 18, No. 3, 447--468 (2020; Zbl 1434.60244) Full Text: DOI
Kück, Fabian; Schuhmacher, Dominic Convergence rates for the degree distribution in a dynamic network model. (English) Zbl 1444.60079 Stoch. Models 36, No. 1, 134-171 (2020). MSC: 60J80 05C80 60J85 05C82 82C41 PDF BibTeX XML Cite \textit{F. Kück} and \textit{D. Schuhmacher}, Stoch. Models 36, No. 1, 134--171 (2020; Zbl 1444.60079) Full Text: DOI
Ji, Li-na; Li, Zeng-hu Moments of continuous-state branching processes with or without immigration. (English) Zbl 07189529 Acta Math. Appl. Sin., Engl. Ser. 36, No. 2, 361-373 (2020). Reviewer: Heinrich Hering (Rockenberg) MSC: 60J80 60J85 60H20 PDF BibTeX XML Cite \textit{L.-n. Ji} and \textit{Z.-h. Li}, Acta Math. Appl. Sin., Engl. Ser. 36, No. 2, 361--373 (2020; Zbl 07189529) Full Text: DOI
Hermann, Felix; Pfaffelhuber, Peter Markov branching processes with disasters: extinction, survival and duality to \(p\)-jump processes. (English) Zbl 1434.60241 Stochastic Processes Appl. 130, No. 4, 2488-2518 (2020). MSC: 60J80 60J74 60F10 PDF BibTeX XML Cite \textit{F. Hermann} and \textit{P. Pfaffelhuber}, Stochastic Processes Appl. 130, No. 4, 2488--2518 (2020; Zbl 1434.60241) Full Text: DOI
Abraham, Romain; Debs, Pierre Penalization of Galton-Watson processes. (English) Zbl 07184327 Stochastic Processes Appl. 130, No. 5, 3095-3119 (2020). Reviewer: Renming Song (Urbana) MSC: 60J80 60G42 PDF BibTeX XML Cite \textit{R. Abraham} and \textit{P. Debs}, Stochastic Processes Appl. 130, No. 5, 3095--3119 (2020; Zbl 07184327) Full Text: DOI
Ren, Yan-Xia; Song, Renming; Sun, Zhenyao Spine decompositions and limit theorems for a class of critical superprocesses. (English) Zbl 1434.60250 Acta Appl. Math. 165, No. 1, 91-131 (2020). MSC: 60J80 60F05 PDF BibTeX XML Cite \textit{Y.-X. Ren} et al., Acta Appl. Math. 165, No. 1, 91--131 (2020; Zbl 1434.60250) Full Text: DOI
Wang, Li; Zong, Guowei Supercritical branching Brownian motion with catalytic branching at the origin. (English) Zbl 1431.60104 Sci. China, Math. 63, No. 3, 595-616 (2020). MSC: 60J80 60F15 PDF BibTeX XML Cite \textit{L. Wang} and \textit{G. Zong}, Sci. China, Math. 63, No. 3, 595--616 (2020; Zbl 1431.60104) Full Text: DOI
Meoli, Alessandra; Beerenwinkel, Niko; Lebid, Mykola The fractional birth process with power-law immigration. (English) Zbl 1433.60084 J. Stat. Phys. 178, No. 3, 775-799 (2020). MSC: 60J80 60G22 92D10 PDF BibTeX XML Cite \textit{A. Meoli} et al., J. Stat. Phys. 178, No. 3, 775--799 (2020; Zbl 1433.60084) Full Text: DOI
Wang, Tiandong; Resnick, Sidney I. Degree growth rates and index estimation in a directed preferential attachment model. (English) Zbl 1443.60078 Stochastic Processes Appl. 130, No. 2, 878-906 (2020). MSC: 60J80 60F05 60K35 62G30 PDF BibTeX XML Cite \textit{T. Wang} and \textit{S. I. Resnick}, Stochastic Processes Appl. 130, No. 2, 878--906 (2020; Zbl 1443.60078) Full Text: DOI arXiv
Videla, Leonardo A. On the expected maximum of a birth-and-death process. (English) Zbl 07153465 Stat. Probab. Lett. 158, Article ID 108665, 7 p. (2020). MSC: 60J80 PDF BibTeX XML Cite \textit{L. A. Videla}, Stat. Probab. Lett. 158, Article ID 108665, 7 p. (2020; Zbl 07153465) Full Text: DOI
Khusanbaev, Ya.; Sharipov, S.; Golomoziy, V. Berry-Esseen bound for nearly critical branching processes with immigration. (English) Zbl 07277709 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 4, 42-49 (2019). MSC: 60J80 PDF BibTeX XML Cite \textit{Ya. Khusanbaev} et al., Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 4, 42--49 (2019; Zbl 07277709) Full Text: DOI
Mao, Yonghua; Zhang, Weiwei; Zhang, Yuhui A criterion on separation cutoff for single-birth processes based on eigenvalues. (Chinese. English summary) Zbl 07266658 J. Beijing Norm. Univ., Nat. Sci. 55, No. 6, 677-682 (2019). MSC: 60J80 PDF BibTeX XML Cite \textit{Y. Mao} et al., J. Beijing Norm. Univ., Nat. Sci. 55, No. 6, 677--682 (2019; Zbl 07266658) Full Text: DOI
Xing, Yongsheng One non-sibling mating only bisexual branching processes. (English) Zbl 1449.60126 Acta Sci. Nat. Univ. Nankaiensis 52, No. 5, 24-26 (2019). MSC: 60J80 92D25 PDF BibTeX XML Cite \textit{Y. Xing}, Acta Sci. Nat. Univ. Nankaiensis 52, No. 5, 24--26 (2019; Zbl 1449.60126)
Groisman, Pablo; Jonckheere, Matthieu Front propagation and quasi-stationary distributions: two faces of the same coin. (English) Zbl 1448.60171 Sidoravicius, Vladas (ed.), Sojourns in probability theory and statistical physics. III. Interacting particle systems and random walks, a festschrift for Charles M. Newman. Singapore: Springer; Shanghai: NYU Shanghai. Springer Proc. Math. Stat. 300, 242-254 (2019). MSC: 60J80 60J65 35Q92 35C07 92D25 PDF BibTeX XML Cite \textit{P. Groisman} and \textit{M. Jonckheere}, Springer Proc. Math. Stat. 300, 242--254 (2019; Zbl 1448.60171) Full Text: DOI
Rytova, Anastasiya I.; Yarovaya, Elena B. Moments of particle numbers in a branching random walk with heavy tails. (English. Russian original) Zbl 1441.60070 Russ. Math. Surv. 74, No. 6, 1126-1128 (2019); translation from Usp. Mat. Nauk 74, No. 6, 165-166 (2019). MSC: 60J80 60B99 PDF BibTeX XML Cite \textit{A. I. Rytova} and \textit{E. B. Yarovaya}, Russ. Math. Surv. 74, No. 6, 1126--1128 (2019; Zbl 1441.60070); translation from Usp. Mat. Nauk 74, No. 6, 165--166 (2019) Full Text: DOI
De Masi, Anna; Ferrari, Pablo A.; Presutti, Errico; Soprano-Loto, Nahuel Hydrodynamics of the \(N\)-BBM process. (English) Zbl 1439.60080 Giacomin, Giambattista (ed.) et al., Stochastic dynamics out of equilibrium. Lecture notes from the IHP trimester, Institut Henri Poincaré (IHP), Paris, France, April – July, 2017. Cham: Springer. Springer Proc. Math. Stat. 282, 523-549 (2019). MSC: 60J80 60J65 60H15 35R35 35C07 PDF BibTeX XML Cite \textit{A. De Masi} et al., Springer Proc. Math. Stat. 282, 523--549 (2019; Zbl 1439.60080) Full Text: DOI
Hong, Wenming; Yang, Hui Cutoff phenomenon for nearest Lamperti’s random walk. (English) Zbl 1437.60055 Methodol. Comput. Appl. Probab. 21, No. 4, 1215-1228 (2019). MSC: 60J80 60G50 60F15 PDF BibTeX XML Cite \textit{W. Hong} and \textit{H. Yang}, Methodol. Comput. Appl. Probab. 21, No. 4, 1215--1228 (2019; Zbl 1437.60055) Full Text: DOI
Liu, Jingning; Zhang, Mei Critical survival barrier for branching random walk. (English) Zbl 1434.60245 Front. Math. China 14, No. 6, 1259-1280 (2019). MSC: 60J80 60F05 PDF BibTeX XML Cite \textit{J. Liu} and \textit{M. Zhang}, Front. Math. China 14, No. 6, 1259--1280 (2019; Zbl 1434.60245) Full Text: DOI
Curien, N.; Kortchemski, I. Tell me about the continuous Brownian tree. (Raconte-moi …l’arbre continu brownien.) (French) Zbl 1442.60085 Gaz. Math., Soc. Math. Fr. 162, 56-64 (2019). MSC: 60J80 PDF BibTeX XML Cite \textit{N. Curien} and \textit{I. Kortchemski}, Gaz. Math., Soc. Math. Fr. 162, 56--64 (2019; Zbl 1442.60085)
Bulinskaya, E. Vl. Maximum of a catalytic branching random walk. (English. Russian original) Zbl 1441.60067 Russ. Math. Surv. 74, No. 3, 546-548 (2019); translation from Usp. Mat. Nauk 74, No. 3, 187-188 (2019). MSC: 60J80 60J27 PDF BibTeX XML Cite \textit{E. Vl. Bulinskaya}, Russ. Math. Surv. 74, No. 3, 546--548 (2019; Zbl 1441.60067); translation from Usp. Mat. Nauk 74, No. 3, 187--188 (2019) Full Text: DOI
Zhang, Yanhua; Gao, Zhenlong Deviations for jumping times of a branching process indexed by a Poisson process. (English) Zbl 1435.60057 Math. Probl. Eng. 2019, Article ID 6137926, 7 p. (2019). MSC: 60J80 60F10 60F05 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Z. Gao}, Math. Probl. Eng. 2019, Article ID 6137926, 7 p. (2019; Zbl 1435.60057) Full Text: DOI
Makarova, Yu.; Han, D.; Molchanov, S.; Yarovaya, E. Branching random walks with immigration. Lyapunov stability. (English) Zbl 1431.60099 Markov Process. Relat. Fields 25, No. 4, 683-708 (2019). MSC: 60J80 PDF BibTeX XML Cite \textit{Yu. Makarova} et al., Markov Process. Relat. Fields 25, No. 4, 683--708 (2019; Zbl 1431.60099)
Öz, Mehmet; Engländer, János Optimal survival strategy for branching Brownian motion in a Poissonian trap field. (English. French summary) Zbl 1435.60056 Ann. Inst. Henri Poincaré, Probab. Stat. 55, No. 4, 1890-1915 (2019). MSC: 60J80 60K37 60F10 PDF BibTeX XML Cite \textit{M. Öz} and \textit{J. Engländer}, Ann. Inst. Henri Poincaré, Probab. Stat. 55, No. 4, 1890--1915 (2019; Zbl 1435.60056) Full Text: DOI Euclid
Braunsteins, Peter; Hautphenne, Sophie Extinction in lower Hessenberg branching processes with countably many types. (English) Zbl 1439.60079 Ann. Appl. Probab. 29, No. 5, 2782-2818 (2019). MSC: 60J80 60J05 60J22 PDF BibTeX XML Cite \textit{P. Braunsteins} and \textit{S. Hautphenne}, Ann. Appl. Probab. 29, No. 5, 2782--2818 (2019; Zbl 1439.60079) Full Text: DOI arXiv
Yarovaya, E. Operator equations of branching random walks. (English) Zbl 1428.60126 Methodol. Comput. Appl. Probab. 21, No. 3, 1007-1021 (2019). MSC: 60J80 60J35 62G32 PDF BibTeX XML Cite \textit{E. Yarovaya}, Methodol. Comput. Appl. Probab. 21, No. 3, 1007--1021 (2019; Zbl 1428.60126) Full Text: DOI arXiv
Avram, F.; Patie, P.; Wang, J. Purely excessive functions and hitting times of continuous-time branching processes. (English) Zbl 1427.60174 Methodol. Comput. Appl. Probab. 21, No. 2, 391-399 (2019). MSC: 60J80 60J45 PDF BibTeX XML Cite \textit{F. Avram} et al., Methodol. Comput. Appl. Probab. 21, No. 2, 391--399 (2019; Zbl 1427.60174) Full Text: DOI
Maillard, Pascal; Pain, Michel 1-stable fluctuations in branching Brownian motion at critical temperature. I: The derivative martingale. (English) Zbl 1448.60173 Ann. Probab. 47, No. 5, 2953-3002 (2019). Reviewer: Alexander Iksanov (Kiev) MSC: 60J80 60F17 35K57 82B44 PDF BibTeX XML Cite \textit{P. Maillard} and \textit{M. Pain}, Ann. Probab. 47, No. 5, 2953--3002 (2019; Zbl 1448.60173) Full Text: DOI Euclid arXiv
Fekete, D.; Fontbona, J.; Kyprianou, A. E. Skeletal stochastic differential equations for continuous-state branching processes. (English) Zbl 1427.60176 J. Appl. Probab. 56, No. 4, 1122-1150 (2019). MSC: 60J80 60H30 60G57 60J68 PDF BibTeX XML Cite \textit{D. Fekete} et al., J. Appl. Probab. 56, No. 4, 1122--1150 (2019; Zbl 1427.60176) Full Text: DOI
Foucart, Clément; Ma, Chunhua; Mallein, Bastien Coalescences in continuous-state branching processes. (English) Zbl 1427.60177 Electron. J. Probab. 24, Paper No. 103, 52 p. (2019). MSC: 60J80 60J25 60J27 60J28 PDF BibTeX XML Cite \textit{C. Foucart} et al., Electron. J. Probab. 24, Paper No. 103, 52 p. (2019; Zbl 1427.60177) Full Text: DOI Euclid arXiv
Chen, Xinxin; Guillotin-Plantard, Nadine Branching processes in correlated random environment. (English) Zbl 07142642 Electron. Commun. Probab. 24, Paper No. 71, 13 p. (2019). Reviewer: Utkir A. Rozikov (Tashkent) MSC: 60J80 60K37 60G22 PDF BibTeX XML Cite \textit{X. Chen} and \textit{N. Guillotin-Plantard}, Electron. Commun. Probab. 24, Paper No. 71, 13 p. (2019; Zbl 07142642) Full Text: DOI Euclid
Bazylevych, I. B.; Yakymyshyn, Kh. M. Differential equations for moments and the generating function of number of transformations for branching process with continuous time and migration. (Ukrainian. English summary) Zbl 1438.60108 Bukovyn. Mat. Zh. 7, No. 1, 3-13 (2019). MSC: 60J80 PDF BibTeX XML Cite \textit{I. B. Bazylevych} and \textit{Kh. M. Yakymyshyn}, Bukovyn. Mat. Zh. 7, No. 1, 3--13 (2019; Zbl 1438.60108) Full Text: Link
Bhattacharya, Ayan; Maulik, Krishanu; Palmowski, Zbigniew; Roy, Parthanil Extremes of multitype branching random walks: heaviest tail wins. (English) Zbl 1427.60175 Adv. Appl. Probab. 51, No. 2, 514-540 (2019). MSC: 60J80 60J70 60G55 60G70 PDF BibTeX XML Cite \textit{A. Bhattacharya} et al., Adv. Appl. Probab. 51, No. 2, 514--540 (2019; Zbl 1427.60175) Full Text: DOI
Iksanov, Alexander; Kolesko, Konrad; Meiners, Matthias Stable-like fluctuations of Biggins’ martingales. (English) Zbl 1448.60172 Stochastic Processes Appl. 129, No. 11, 4480-4499 (2019). MSC: 60J80 60F05 60G42 PDF BibTeX XML Cite \textit{A. Iksanov} et al., Stochastic Processes Appl. 129, No. 11, 4480--4499 (2019; Zbl 1448.60172) Full Text: DOI arXiv
Mayster, Penka; Tchorbadjieff, Assen Supercritical Markov branching process with random initial condition. (English) Zbl 1438.60110 C. R. Acad. Bulg. Sci. 72, No. 1, 21-28 (2019). Reviewer: Angela Slavova (Sofia) MSC: 60J80 60K05 PDF BibTeX XML Cite \textit{P. Mayster} and \textit{A. Tchorbadjieff}, C. R. Acad. Bulg. Sci. 72, No. 1, 21--28 (2019; Zbl 1438.60110) Full Text: DOI
Berestycki, Julien; Brunet, Éric; Harris, Simon C.; Miłoś, Piotr Corrigendum to “Branching Brownian motion with absorption and the all-time minimum of branching Brownian motion with drift” [J. funct. Anal. 273 (6) (2017) 2107-2143]. (English) Zbl 07118819 J. Funct. Anal. 277, No. 12, Article ID 108297, 1 p. (2019). MSC: 60J80 60J65 60J85 92D25 PDF BibTeX XML Cite \textit{J. Berestycki} et al., J. Funct. Anal. 277, No. 12, Article ID 108297, 1 p. (2019; Zbl 07118819) Full Text: DOI
Hong, Wenming; Liu, Minzhi; Vatutin, Vladimir Limit theorems for supercritical MBPRE with linear fractional offspring distributions. (English) Zbl 1423.60129 Markov Process. Relat. Fields 25, No. 1, 1-31 (2019). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{W. Hong} et al., Markov Process. Relat. Fields 25, No. 1, 1--31 (2019; Zbl 1423.60129) Full Text: arXiv
Cortines, Aser; Hartung, Lisa; Louidor, Oren The structure of extreme level sets in branching Brownian motion. (English) Zbl 07114717 Ann. Probab. 47, No. 4, 2257-2302 (2019). MSC: 60J80 60G70 60G15 PDF BibTeX XML Cite \textit{A. Cortines} et al., Ann. Probab. 47, No. 4, 2257--2302 (2019; Zbl 07114717) Full Text: DOI Euclid arXiv
Bocharov, Sergey; Wang, Li Branching Brownian motion with spatially homogeneous and point-catalytic branching. (English) Zbl 1436.60077 J. Appl. Probab. 56, No. 3, 891-917 (2019). MSC: 60J80 60F15 PDF BibTeX XML Cite \textit{S. Bocharov} and \textit{L. Wang}, J. Appl. Probab. 56, No. 3, 891--917 (2019; Zbl 1436.60077) Full Text: DOI arXiv
Shiozawa, Yuichi Maximal displacement and population growth for branching Brownian motions. (English) Zbl 07110746 Ill. J. Math. 63, No. 3, 353-402 (2019). MSC: 60J80 60J65 PDF BibTeX XML Cite \textit{Y. Shiozawa}, Ill. J. Math. 63, No. 3, 353--402 (2019; Zbl 07110746) Full Text: DOI Euclid
Lin, Shen Harmonic measure for biased random walk in a supercritical Galton-Watson tree. (English) Zbl 1428.62373 Bernoulli 25, No. 4B, 3652-3672 (2019). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{S. Lin}, Bernoulli 25, No. 4B, 3652--3672 (2019; Zbl 1428.62373) Full Text: DOI Euclid
Marguet, Aline Uniform sampling in a structured branching population. (English) Zbl 1428.62377 Bernoulli 25, No. 4A, 2649-2695 (2019). MSC: 60J80 60J85 92D25 PDF BibTeX XML Cite \textit{A. Marguet}, Bernoulli 25, No. 4A, 2649--2695 (2019; Zbl 1428.62377) Full Text: DOI Euclid
Yang, Hui Scaling limit of the local time of the reflected \((1, 2)\)-random walk. (English) Zbl 1422.60151 Stat. Probab. Lett. 155, Article ID 108578, 8 p. (2019). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{H. Yang}, Stat. Probab. Lett. 155, Article ID 108578, 8 p. (2019; Zbl 1422.60151) Full Text: DOI
Le, Vi Reflected Brownian motion with a drift that depends on its local time. (English) Zbl 1422.60148 Stat. Probab. Lett. 154, Article ID 108546, 5 p. (2019). MSC: 60J80 60F17 92D25 PDF BibTeX XML Cite \textit{V. Le}, Stat. Probab. Lett. 154, Article ID 108546, 5 p. (2019; Zbl 1422.60148) Full Text: DOI
Li, Pei-Sen A continuous-state polynomial branching process. (English) Zbl 1422.60149 Stochastic Processes Appl. 129, No. 8, 2941-2967 (2019). MSC: 60J80 60H30 92D15 92D25 PDF BibTeX XML Cite \textit{P.-S. Li}, Stochastic Processes Appl. 129, No. 8, 2941--2967 (2019; Zbl 1422.60149) Full Text: DOI arXiv
Duquesne, Thomas; Winkel, Matthias Hereditary tree growth and Lévy forests. (English) Zbl 07107460 Stochastic Processes Appl. 129, No. 10, 3690-3747 (2019). MSC: 60J80 PDF BibTeX XML Cite \textit{T. Duquesne} and \textit{M. Winkel}, Stochastic Processes Appl. 129, No. 10, 3690--3747 (2019; Zbl 07107460) Full Text: DOI arXiv
Boutaud, Pierre; Maillard, Pascal A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions. (English) Zbl 07107406 Electron. J. Probab. 24, Paper No. 99, 22 p. (2019). MSC: 60J80 60J50 60B10 PDF BibTeX XML Cite \textit{P. Boutaud} and \textit{P. Maillard}, Electron. J. Probab. 24, Paper No. 99, 22 p. (2019; Zbl 07107406) Full Text: DOI Euclid arXiv