Chadjiconstantinidis, Stathis; Politis, Konstadinos Bounds for the distribution and moments of the forward and backward recurrence times in a renewal process. (English) Zbl 07901807 J. Comput. Appl. Math. 454, Article ID 116166, 22 p. (2025). MSC: 60K05 60K10 PDFBibTeX XMLCite \textit{S. Chadjiconstantinidis} and \textit{K. Politis}, J. Comput. Appl. Math. 454, Article ID 116166, 22 p. (2025; Zbl 07901807) Full Text: DOI
Chadjiconstantinidis, Stathis Two-sided bounds for some quantities in the delayed renewal process. (English) Zbl 07898499 Methodol. Comput. Appl. Probab. 26, No. 3, Paper No. 26, 48 p. (2024). MSC: 60K05 60K10 PDFBibTeX XMLCite \textit{S. Chadjiconstantinidis}, Methodol. Comput. Appl. Probab. 26, No. 3, Paper No. 26, 48 p. (2024; Zbl 07898499) Full Text: DOI
Bakai, G. A. On the convergence rate in a local renewal theorem for a random Markov walk. (English. Russian original) Zbl 07878669 Math. Notes 115, No. 4, 479-488 (2024); translation from Mat. Zametki 115, No. 4, 521-532 (2024). MSC: 60K05 60K15 60J10 PDFBibTeX XMLCite \textit{G. A. Bakai}, Math. Notes 115, No. 4, 479--488 (2024; Zbl 07878669); translation from Mat. Zametki 115, No. 4, 521--532 (2024) Full Text: DOI
Kumar, Nitin; Barbhuiya, F. P. Transient behavior of a discrete-time renewal population growth model subject to geometric catastrophes. (English) Zbl 07859864 J. Ind. Manag. Optim. 20, No. 7, 2500-2515 (2024). MSC: 60K05 60H35 PDFBibTeX XMLCite \textit{N. Kumar} and \textit{F. P. Barbhuiya}, J. Ind. Manag. Optim. 20, No. 7, 2500--2515 (2024; Zbl 07859864) Full Text: DOI
Beghin, Luisa; Cristofaro, Lorenzo; Garrappa, Roberto Renewal processes linked to fractional relaxation equations with variable order. (English) Zbl 1539.60120 J. Math. Anal. Appl. 531, No. 1, Part 2, Article ID 127795, 17 p. (2024). MSC: 60K05 60G22 PDFBibTeX XMLCite \textit{L. Beghin} et al., J. Math. Anal. Appl. 531, No. 1, Part 2, Article ID 127795, 17 p. (2024; Zbl 1539.60120) Full Text: DOI arXiv
Losidis, Sotirios Refinement bounds for the expected number of renewal epochs over a finite interval. (English) Zbl 07814993 Statistics 58, No. 1, 176-193 (2024). Reviewer: Kurt Marti (München) MSC: 60K05 60K10 PDFBibTeX XMLCite \textit{S. Losidis}, Statistics 58, No. 1, 176--193 (2024; Zbl 07814993) Full Text: DOI
Godrèche, Claude; Luck, Jean-Marc Replicating a renewal process at random times. (English) Zbl 1540.60197 J. Stat. Phys. 191, No. 1, Paper No. 4, 39 p. (2024). MSC: 60K05 60K10 60K50 82B41 PDFBibTeX XMLCite \textit{C. Godrèche} and \textit{J.-M. Luck}, J. Stat. Phys. 191, No. 1, Paper No. 4, 39 p. (2024; Zbl 1540.60197) Full Text: DOI arXiv
Janson, Svante On a central limit theorem in renewal theory. (English) Zbl 1540.60198 Stat. Probab. Lett. 204, Article ID 109948, 10 p. (2024). Reviewer: Edward Omey (Brussel) MSC: 60K05 60F05 60F99 PDFBibTeX XMLCite \textit{S. Janson}, Stat. Probab. Lett. 204, Article ID 109948, 10 p. (2024; Zbl 1540.60198) Full Text: DOI arXiv OA License
Bengtsson, Henrik; Podgorski, Krzysztof Characteristics of asymmetric switch processes with independent switching times. arXiv:2409.05641 Preprint, arXiv:2409.05641 [math.PR] (2024). MSC: 60K05 60G55 60E07 60K15 BibTeX Cite \textit{H. Bengtsson} and \textit{K. Podgorski}, ``Characteristics of asymmetric switch processes with independent switching times'', Preprint, arXiv:2409.05641 [math.PR] (2024) Full Text: arXiv OA License
Cormier, Quentin Renewal theorems in a periodic environment. arXiv:2403.07439 Preprint, arXiv:2403.07439 [math.PR] (2024). MSC: 60K05 45D05 BibTeX Cite \textit{Q. Cormier}, ``Renewal theorems in a periodic environment'', Preprint, arXiv:2403.07439 [math.PR] (2024) Full Text: arXiv OA License
Koga, Toshihiro A Proof of Basic Limit Theorem of Renewal Theory. arXiv:2402.17953 Preprint, arXiv:2402.17953 [math.PR] (2024). MSC: 60K05 40E05 40A05 BibTeX Cite \textit{T. Koga}, ``A Proof of Basic Limit Theorem of Renewal Theory'', Preprint, arXiv:2402.17953 [math.PR] (2024) Full Text: arXiv OA License
Fontes, Luiz Renato Contact process under renewal cures. An overview of recent results. (English) Zbl 07856286 Mat. Contemp. 58, 234-263 (2023). MSC: 60K05 82B43 PDFBibTeX XMLCite \textit{L. R. Fontes}, Mat. Contemp. 58, 234--263 (2023; Zbl 07856286) Full Text: DOI
Arista, Jonas; Rivero, Víctor Implicit renewal theory for exponential functionals of Lévy processes. (English) Zbl 1517.60115 Stochastic Processes Appl. 163, 262-287 (2023). MSC: 60K05 60G51 60E07 60G18 60J25 PDFBibTeX XMLCite \textit{J. Arista} and \textit{V. Rivero}, Stochastic Processes Appl. 163, 262--287 (2023; Zbl 1517.60115) Full Text: DOI arXiv
Villarroel, Javier; Vega, Juan A. The two-barrier escape problem for compound renewal processes with two-sided jumps. (English) Zbl 1515.60280 Stoch. Dyn. 23, No. 3, Article ID 2350022, 23 p. (2023). MSC: 60K05 91G05 60G55 PDFBibTeX XMLCite \textit{J. Villarroel} and \textit{J. A. Vega}, Stoch. Dyn. 23, No. 3, Article ID 2350022, 23 p. (2023; Zbl 1515.60280) Full Text: DOI
Chadjiconstantinidis, Stathis Sequences of improved two-sided bounds for the renewal function and the solutions of renewal-type equations. (English) Zbl 1515.60276 Methodol. Comput. Appl. Probab. 25, No. 2, Paper No. 51, 31 p. (2023). MSC: 60K05 60K10 PDFBibTeX XMLCite \textit{S. Chadjiconstantinidis}, Methodol. Comput. Appl. Probab. 25, No. 2, Paper No. 51, 31 p. (2023; Zbl 1515.60276) Full Text: DOI
Kamps, Udo; Rauwolf, Diana A record-values property of a renewal process with random inspection time. (English) Zbl 1515.60277 Stat. Probab. Lett. 195, Article ID 109785, 7 p. (2023). MSC: 60K05 62E10 60G70 60G55 PDFBibTeX XMLCite \textit{U. Kamps} and \textit{D. Rauwolf}, Stat. Probab. Lett. 195, Article ID 109785, 7 p. (2023; Zbl 1515.60277) Full Text: DOI
Godrèche, Claude Poisson points, resetting, universality and the role of the last item. (English) Zbl 1509.60157 J. Phys. A, Math. Theor. 56, No. 21, Article ID 21LT01, 7 p. (2023). MSC: 60K05 82C41 PDFBibTeX XMLCite \textit{C. Godrèche}, J. Phys. A, Math. Theor. 56, No. 21, Article ID 21LT01, 7 p. (2023; Zbl 1509.60157) Full Text: DOI arXiv
Tzaninis, Spyridon M.; Macheras, Nikolaos D. A characterization of progressively equivalent probability measures preserving the structure of a compound mixed renewal process. (English) Zbl 1509.60158 ALEA, Lat. Am. J. Probab. Math. Stat. 20, No. 1, 225-247 (2023). MSC: 60K05 60A10 60G44 60G55 91G05 PDFBibTeX XMLCite \textit{S. M. Tzaninis} and \textit{N. D. Macheras}, ALEA, Lat. Am. J. Probab. Math. Stat. 20, No. 1, 225--247 (2023; Zbl 1509.60158) Full Text: arXiv Link
Losidis, Sotirios Recurrence times and the expected number of renewal epochs over a finite interval. (English) Zbl 1520.60058 Statistics 57, No. 1, 195-212 (2023). Reviewer: Eugen Paltanea (Braşov) MSC: 60K05 60K10 PDFBibTeX XMLCite \textit{S. Losidis}, Statistics 57, No. 1, 195--212 (2023; Zbl 1520.60058) Full Text: DOI
Michelitsch, Thomas M.; Polito, Federico; Riascos, Alejandro P. Squirrels can remember little: a random walk with jump reversals induced by a discrete-time renewal process. (English) Zbl 1515.60279 Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 107031, 28 p. (2023). MSC: 60K05 60G22 60G55 60K15 PDFBibTeX XMLCite \textit{T. M. Michelitsch} et al., Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 107031, 28 p. (2023; Zbl 1515.60279) Full Text: DOI arXiv
Chadjiconstantinidis, Stathis Some bounds for the renewal function and the variance of the renewal process. (English) Zbl 1510.60082 Appl. Math. Comput. 436, Article ID 127497, 16 p. (2023). MSC: 60K05 60K10 PDFBibTeX XMLCite \textit{S. Chadjiconstantinidis}, Appl. Math. Comput. 436, Article ID 127497, 16 p. (2023; Zbl 1510.60082) Full Text: DOI
Nikolov, Nikolai; Savov, Mladen Properties and conjectures regarding discrete renewal sequences. arXiv:2307.00545 Preprint, arXiv:2307.00545 [math.PR] (2023). MSC: 60K05 32E30 BibTeX Cite \textit{N. Nikolov} and \textit{M. Savov}, ``Properties and conjectures regarding discrete renewal sequences'', Preprint, arXiv:2307.00545 [math.PR] (2023) Full Text: DOI arXiv OA License
Logachov, A. V.; Mogulskii, A. A.; Prokopenko, E. I. Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models. (English. Russian original) Zbl 1515.60278 Probl. Inf. Transm. 58, No. 2, 144-159 (2022); translation from Probl. Peredachi Inf. 58, No. 2, 48-65 (2022). MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{A. V. Logachov} et al., Probl. Inf. Transm. 58, No. 2, 144--159 (2022; Zbl 1515.60278); translation from Probl. Peredachi Inf. 58, No. 2, 48--65 (2022) Full Text: DOI arXiv
Zamparo, Marco Statistical fluctuations under resetting: rigorous results. (English) Zbl 1509.60159 J. Phys. A, Math. Theor. 55, No. 48, Article ID 484001, 50 p. (2022). MSC: 60K05 60F05 60F10 60F15 60J55 82C41 PDFBibTeX XMLCite \textit{M. Zamparo}, J. Phys. A, Math. Theor. 55, No. 48, Article ID 484001, 50 p. (2022; Zbl 1509.60159) Full Text: DOI arXiv
Losidis, Sotirios; Politis, Konstadinos Bounds for the renewal function and related quantities. (English) Zbl 1506.60101 Methodol. Comput. Appl. Probab. 24, No. 4, 2647-2660 (2022). MSC: 60K05 60K10 PDFBibTeX XMLCite \textit{S. Losidis} and \textit{K. Politis}, Methodol. Comput. Appl. Probab. 24, No. 4, 2647--2660 (2022; Zbl 1506.60101) Full Text: DOI
Cadena, Meitner; Jasiulis-Gołdyn, Barbara H.; Omey, Edward Asymptotics for Kendall’s renewal function. (English) Zbl 1512.60059 ALEA, Lat. Am. J. Probab. Math. Stat. 19, No. 2, 1401-1420 (2022). Reviewer: Oleg K. Zakusilo (Kyïv) MSC: 60K05 26A12 41A25 PDFBibTeX XMLCite \textit{M. Cadena} et al., ALEA, Lat. Am. J. Probab. Math. Stat. 19, No. 2, 1401--1420 (2022; Zbl 1512.60059) Full Text: arXiv Link
Li, Jialun Fourier decay, renewal theorem and spectral gaps for random walks on split semisimple Lie groups. (English. French summary) Zbl 1522.60071 Ann. Sci. Éc. Norm. Supér. (4) 55, No. 6, 1613-1686 (2022). Reviewer: C. R. E. Raja (Bangalore) MSC: 60K05 22E46 37C30 PDFBibTeX XMLCite \textit{J. Li}, Ann. Sci. Éc. Norm. Supér. (4) 55, No. 6, 1613--1686 (2022; Zbl 1522.60071) Full Text: DOI arXiv
Fitzsimmons, P. J. Monotonicity properties of regenerative sets and Lorden’s inequality. (English) Zbl 1497.60124 Chen, Zhen-Qing (ed.) et al., Dirichlet forms and related topics, in honor of Masatoshi Fukushima’s beiju, IWDFRT 2022, Osaka, Japan, August 22–26,2022. Singapore: Springer. Springer Proc. Math. Stat. 394, 109-117 (2022). MSC: 60K05 60J55 60D05 PDFBibTeX XMLCite \textit{P. J. Fitzsimmons}, Springer Proc. Math. Stat. 394, 109--117 (2022; Zbl 1497.60124) Full Text: DOI
Psarrakos, Georgios Relations between integrated tails and moments based on the deficit at ruin in the renewal risk model. (English) Zbl 07596347 Commun. Stat., Theory Methods 51, No. 21, 7631-7651 (2022). MSC: 60K05 91B30 PDFBibTeX XMLCite \textit{G. Psarrakos}, Commun. Stat., Theory Methods 51, No. 21, 7631--7651 (2022; Zbl 07596347) Full Text: DOI
Harel, Michel; Ngatchou-Wandji, Joseph; Andriamampionona, Livasoa; Harison, Victor Weak convergence of nonparametric estimators of the multidimensional and multidimensional-multivariate renewal functions on Skorohod topology spaces. (English) Zbl 1497.60125 Stat. Inference Stoch. Process. 25, No. 3, 485-504 (2022). MSC: 60K05 60F17 62E20 62G05 62G20 PDFBibTeX XMLCite \textit{M. Harel} et al., Stat. Inference Stoch. Process. 25, No. 3, 485--504 (2022; Zbl 1497.60125) Full Text: DOI
Bohun, Vladyslav; Iksanov, Alexander; Marynych, Alexander; Rashytov, Bohdan Renewal theory for iterated perturbed random walks on a general branching process tree: intermediate generations. (English) Zbl 1496.60107 J. Appl. Probab. 59, No. 2, 421-446 (2022). MSC: 60K05 60J80 60G05 PDFBibTeX XMLCite \textit{V. Bohun} et al., J. Appl. Probab. 59, No. 2, 421--446 (2022; Zbl 1496.60107) Full Text: DOI arXiv
Adékambi, Franck; Takouda, Essodina On the discounted penalty function in a perturbed Erlang renewal risk model with dependence. (English) Zbl 1496.60106 Methodol. Comput. Appl. Probab. 24, No. 2, 481-513 (2022). MSC: 60K05 91G05 PDFBibTeX XMLCite \textit{F. Adékambi} and \textit{E. Takouda}, Methodol. Comput. Appl. Probab. 24, No. 2, 481--513 (2022; Zbl 1496.60106) Full Text: DOI
Pekalp, Mustafa Hilmi Some new bounds for the mean value function of the residual lifetime process. (English) Zbl 1487.60163 Stat. Probab. Lett. 187, Article ID 109497, 9 p. (2022). MSC: 60K05 91G05 PDFBibTeX XMLCite \textit{M. H. Pekalp}, Stat. Probab. Lett. 187, Article ID 109497, 9 p. (2022; Zbl 1487.60163) Full Text: DOI
Kevei, Péter; Terhesiu, Dalia Strong renewal theorem and local limit theorem in the absence of regular variation. (English) Zbl 1502.60128 J. Theor. Probab. 35, No. 2, 1013-1048 (2022). MSC: 60K05 PDFBibTeX XMLCite \textit{P. Kevei} and \textit{D. Terhesiu}, J. Theor. Probab. 35, No. 2, 1013--1048 (2022; Zbl 1502.60128) Full Text: DOI arXiv
Losidis, Sotirios Covariance between the forward recurrence time and the number of renewals. (English) Zbl 1489.60139 Mod. Stoch., Theory Appl. 9, No. 1, 1-16 (2022). MSC: 60K05 60K10 PDFBibTeX XMLCite \textit{S. Losidis}, Mod. Stoch., Theory Appl. 9, No. 1, 1--16 (2022; Zbl 1489.60139) Full Text: DOI
Jiang, R. Two approximations of renewal function for any arbitrary lifetime distribution. (English) Zbl 1492.60245 Ann. Oper. Res. 311, No. 1, 151-165 (2022). MSC: 60K05 60K25 60K10 90B22 90B25 PDFBibTeX XMLCite \textit{R. Jiang}, Ann. Oper. Res. 311, No. 1, 151--165 (2022; Zbl 1492.60245) Full Text: DOI
Doney, Ron Erratum to: “The remainder in the renewal theorem”. (English) Zbl 1481.60185 Electron. Commun. Probab. 27, Paper No. 17, 5 p. (2022). MSC: 60K05 60G50 PDFBibTeX XMLCite \textit{R. Doney}, Electron. Commun. Probab. 27, Paper No. 17, 5 p. (2022; Zbl 1481.60185) Full Text: DOI
Lyberopoulos, Demetrios P.; Macheras, Nikolaos D. Some characterizations of mixed renewal processes. (English) Zbl 1490.60236 Math. Slovaca 72, No. 1, 197-216 (2022). MSC: 60K05 PDFBibTeX XMLCite \textit{D. P. Lyberopoulos} and \textit{N. D. Macheras}, Math. Slovaca 72, No. 1, 197--216 (2022; Zbl 1490.60236) Full Text: DOI arXiv OA License
Suyono; Hadi, Ibnu; Mulyono Alternating renewal processes with instantaneous rewards. (English) Zbl 1490.60237 Stoch. Models 38, No. 1, 51-69 (2022). MSC: 60K05 60G55 PDFBibTeX XMLCite \textit{Suyono} et al., Stoch. Models 38, No. 1, 51--69 (2022; Zbl 1490.60237) Full Text: DOI
Godrèche, Claude The Buffon needle problem for Lévy distributed spacings and renewal theory. (English) Zbl 1539.60121 J. Stat. Mech. Theory Exp. 2022, No. 1, Article ID 013203, 26 p. (2022). MSC: 60K05 82B05 PDFBibTeX XMLCite \textit{C. Godrèche}, J. Stat. Mech. Theory Exp. 2022, No. 1, Article ID 013203, 26 p. (2022; Zbl 1539.60121) Full Text: DOI arXiv
Godrèche, Claude; Luck, Jean-Marc Record statistics of integrated random walks and the random acceleration process. (English) Zbl 1490.60235 J. Stat. Phys. 186, No. 1, Paper No. 4, 32 p. (2022). MSC: 60K05 82C41 PDFBibTeX XMLCite \textit{C. Godrèche} and \textit{J.-M. Luck}, J. Stat. Phys. 186, No. 1, Paper No. 4, 32 p. (2022; Zbl 1490.60235) Full Text: DOI arXiv
Dermitzakis, Vaios; Politis, Konstadinos Monotonicity properties for solutions of renewal equations. (English) Zbl 1474.60200 Stat. Probab. Lett. 180, Article ID 109226, 7 p. (2022). MSC: 60K05 60K10 PDFBibTeX XMLCite \textit{V. Dermitzakis} and \textit{K. Politis}, Stat. Probab. Lett. 180, Article ID 109226, 7 p. (2022; Zbl 1474.60200) Full Text: DOI
Basrak, Bojan; Dajaković, Marina On renewal theory for cluster processes. arXiv:2211.03749 Preprint, arXiv:2211.03749 [math.PR] (2022). MSC: 60K05 60G55 60B10 BibTeX Cite \textit{B. Basrak} and \textit{M. Dajaković}, ``On renewal theory for cluster processes'', Preprint, arXiv:2211.03749 [math.PR] (2022) Full Text: arXiv OA License
Bengtsson, Henrik Characteristics of the switch process and geometric divisibility. arXiv:2205.06103 Preprint, arXiv:2205.06103 [math.PR] (2022). MSC: 60K05 60G55 60E07 60G10 BibTeX Cite \textit{H. Bengtsson}, ``Characteristics of the switch process and geometric divisibility'', Preprint, arXiv:2205.06103 [math.PR] (2022) Full Text: arXiv OA License
Mogul’skiĭ, Anatoliĭ Al’fredovich Extended principle of large deviations for trajectories of a generalized renewal process. (Russian) Zbl 1507.60115 Mat. Tr. 24, No. 1, 142-174 (2021). MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{A. A. Mogul'skiĭ}, Mat. Tr. 24, No. 1, 142--174 (2021; Zbl 1507.60115) Full Text: DOI MNR
Bak, Joseph; Shnaps, Daniella From repeated tosses of a fair die to the renewal theorem. (English) Zbl 1490.60234 Albanian J. Math. 15, No. 2, 73-83 (2021). MSC: 60K05 PDFBibTeX XMLCite \textit{J. Bak} and \textit{D. Shnaps}, Albanian J. Math. 15, No. 2, 73--83 (2021; Zbl 1490.60234) Full Text: Link
Sarada, Y.; Shenbagam, R. Bi-dimensional availability function and its application. (English) Zbl 1492.60247 Commun. Stat., Simulation Comput. 50, No. 5, 1333-1347 (2021). MSC: 60K05 90B25 62N05 PDFBibTeX XMLCite \textit{Y. Sarada} and \textit{R. Shenbagam}, Commun. Stat., Simulation Comput. 50, No. 5, 1333--1347 (2021; Zbl 1492.60247) Full Text: DOI
Yarova, O. A.; Yeleyko, Ya. I. The renewal equation in nonlinear approximation. (English) Zbl 1492.60248 Mat. Stud. 56, No. 1, 103-106 (2021). MSC: 60K05 PDFBibTeX XMLCite \textit{O. A. Yarova} and \textit{Ya. I. Yeleyko}, Mat. Stud. 56, No. 1, 103--106 (2021; Zbl 1492.60248) Full Text: DOI
Losidis, Sotirios; Politis, Konstadinos; Psarrakos, Georgios Exact results and bounds for the joint tail and moments of the recurrence times in a renewal process. (English) Zbl 1478.60239 Methodol. Comput. Appl. Probab. 23, No. 4, 1489-1505 (2021). MSC: 60K05 60K10 PDFBibTeX XMLCite \textit{S. Losidis} et al., Methodol. Comput. Appl. Probab. 23, No. 4, 1489--1505 (2021; Zbl 1478.60239) Full Text: DOI
Golomozyĭ, V. V. On estimating exponential moment for the simultaneous renewal time for two random walks on a half line. (Ukrainian. English summary) Zbl 1488.60209 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2021, No. 2, 26-31 (2021). MSC: 60K05 60J10 90B22 PDFBibTeX XMLCite \textit{V. V. Golomozyĭ}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2021, No. 2, 26--31 (2021; Zbl 1488.60209) Full Text: DOI OA License
Zamparo, Marco Critical fluctuations in renewal models of statistical mechanics. (English) Zbl 1490.60238 J. Math. Phys. 62, No. 11, Article ID 113301, 13 p. (2021). MSC: 60K05 82B20 82B23 PDFBibTeX XMLCite \textit{M. Zamparo}, J. Math. Phys. 62, No. 11, Article ID 113301, 13 p. (2021; Zbl 1490.60238) Full Text: DOI arXiv
Logachov, Artem Vasilhevich; Mogulskii, Anatolii Alfredovich The moderate deviations principle for the trajectories of compound renewal processes on the half-line. (English) Zbl 1485.60083 Sib. Èlektron. Mat. Izv. 18, No. 2, 1189-1200 (2021). Reviewer: Edward Omey (Brussel) MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{A. V. Logachov} and \textit{A. A. Mogulskii}, Sib. Èlektron. Mat. Izv. 18, No. 2, 1189--1200 (2021; Zbl 1485.60083) Full Text: DOI
Carlsson, Hasse Estimates of the renewal measure. (English) Zbl 1484.60099 J. Math. Soc. Japan 73, No. 3, 681-701 (2021). Reviewer: Jialun Li (Zürich) MSC: 60K05 42A38 42A85 PDFBibTeX XMLCite \textit{H. Carlsson}, J. Math. Soc. Japan 73, No. 3, 681--701 (2021; Zbl 1484.60099) Full Text: DOI
Kombrink, Sabrina Renewal theorems and their application in fractal geometry. (English) Zbl 1470.60239 Freiberg, Uta (ed.) et al., Fractal geometry and stochastics VI. Selected papers of the 6th conference, Bad Herrenalb, Germany, September 30 – October 6, 2018. Cham: Birkhäuser. Prog. Probab. 76, 71-98 (2021). MSC: 60K05 60K15 28A80 28A75 PDFBibTeX XMLCite \textit{S. Kombrink}, Prog. Probab. 76, 71--98 (2021; Zbl 1470.60239) Full Text: DOI Link
Borovkov, A. A. Extension of the invariance principle for compound renewal processes to the zones of moderately large and small deviations. (English. Russian original) Zbl 1455.60118 Theory Probab. Appl. 65, No. 4, 511-526 (2021); translation from Teor. Veroyatn. Primen. 65, No. 4, 651-670 (2020). MSC: 60K05 60F17 60F10 PDFBibTeX XMLCite \textit{A. A. Borovkov}, Theory Probab. Appl. 65, No. 4, 511--526 (2021; Zbl 1455.60118); translation from Teor. Veroyatn. Primen. 65, No. 4, 651--670 (2020) Full Text: DOI
Pekalp, Mustafa Hilmi; Aydoğdu, Halil Power series expansions for the probability distribution, mean value and variance functions of a geometric process with gamma interarrival times. (English) Zbl 1466.60183 J. Comput. Appl. Math. 388, Article ID 113287, 11 p. (2021). MSC: 60K05 90B25 60K10 PDFBibTeX XMLCite \textit{M. H. Pekalp} and \textit{H. Aydoğdu}, J. Comput. Appl. Math. 388, Article ID 113287, 11 p. (2021; Zbl 1466.60183) Full Text: DOI
Zverkina, Galina A. About quasi-renewal processes and quasi-regenerative processes. arXiv:2112.15225 Preprint, arXiv:2112.15225 [math.PR] (2021). MSC: 60K05 60K15 60K20 60K25 BibTeX Cite \textit{G. A. Zverkina}, ``About quasi-renewal processes and quasi-regenerative processes'', Preprint, arXiv:2112.15225 [math.PR] (2021) Full Text: arXiv OA License
Mogul’skiĭ, Anatoliĭ Al’fredovich; Prokopenko, Evgeniĭ Igorevich Large deviation principle for finite-dimensional distributions of multidimensional generalized renewal processes. (Принцип больших уклонений для конечномерных распределений многомерных обобщенных процессов восстановления.) (Russian) Zbl 1505.60084 Mat. Tr. 23, No. 2, 148-176 (2020). MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{A. A. Mogul'skiĭ} and \textit{E. I. Prokopenko}, Mat. Tr. 23, No. 2, 148--176 (2020; Zbl 1505.60084) Full Text: DOI MNR
Chatrabgoun, Omid; Daneshkhah, Alireza; Parham, Gholamali On the functional central limit theorem for first passage time of nonlinear semi-Markov reward processes. (English) Zbl 07529923 Commun. Stat., Theory Methods 49, No. 19, 4737-4750 (2020). MSC: 60K05 60K30 62-XX PDFBibTeX XMLCite \textit{O. Chatrabgoun} et al., Commun. Stat., Theory Methods 49, No. 19, 4737--4750 (2020; Zbl 07529923) Full Text: DOI
Pekalp, Mustafa Hilmi; Altındağ, Ömer; Acar, Özgür; Aydoğdu, Halil Plug-in estimators for the mean value and variance functions in delayed renewal processes. (English) Zbl 07529921 Commun. Stat., Theory Methods 49, No. 19, 4693-4711 (2020). MSC: 60K05 62F12 62-XX PDFBibTeX XMLCite \textit{M. H. Pekalp} et al., Commun. Stat., Theory Methods 49, No. 19, 4693--4711 (2020; Zbl 07529921) Full Text: DOI
Wang, Yuebao; Cheng, Dongya Elementary renewal theorems for widely dependent random variables with applications to precise large deviations. (English) Zbl 1511.60131 Commun. Stat., Theory Methods 49, No. 14, 3352-3374 (2020). MSC: 60K05 60F10 60F15 62P05 91B05 PDFBibTeX XMLCite \textit{Y. Wang} and \textit{D. Cheng}, Commun. Stat., Theory Methods 49, No. 14, 3352--3374 (2020; Zbl 1511.60131) Full Text: DOI
Enriquez, Nathanaël; Noiry, Nathan A solvable class of renewal processes. (English) Zbl 1477.60131 Electron. Commun. Probab. 25, Paper No. 69, 14 p. (2020). Reviewer: Edward Omey (Brussel) MSC: 60K05 82D60 30D35 PDFBibTeX XMLCite \textit{N. Enriquez} and \textit{N. Noiry}, Electron. Commun. Probab. 25, Paper No. 69, 14 p. (2020; Zbl 1477.60131) Full Text: DOI arXiv Euclid
Golomoziy, Vitaliy Stability of functionals of perturbed Markov chains under the condition of uniform minorization. (English) Zbl 1457.60135 Random Oper. Stoch. Equ. 28, No. 4, 237-251 (2020). MSC: 60K05 60J10 PDFBibTeX XMLCite \textit{V. Golomoziy}, Random Oper. Stoch. Equ. 28, No. 4, 237--251 (2020; Zbl 1457.60135) Full Text: DOI
Uchiyama, Kôhei A renewal theorem for relatively stable variables. (English) Zbl 1466.60184 Bull. Lond. Math. Soc. 52, No. 6, 1174-1190 (2020). Reviewer: Edward Omey (Brussel) MSC: 60K05 60G20 PDFBibTeX XMLCite \textit{K. Uchiyama}, Bull. Lond. Math. Soc. 52, No. 6, 1174--1190 (2020; Zbl 1466.60184) Full Text: DOI arXiv
Losidis, Sotirios; Politis, Konstadinos Moments of the forward recurrence time in a renewal process. (English) Zbl 1460.60098 Methodol. Comput. Appl. Probab. 22, No. 4, 1591-1600 (2020). MSC: 60K05 60K10 PDFBibTeX XMLCite \textit{S. Losidis} and \textit{K. Politis}, Methodol. Comput. Appl. Probab. 22, No. 4, 1591--1600 (2020; Zbl 1460.60098) Full Text: DOI
Golomozyĭ, V. V. Estimates of stability of transition probabilities for non-homogeneous Markov chains in the case of the uniform minorization. (English. Ukrainian original) Zbl 1455.60119 Theory Probab. Math. Stat. 101, 85-101 (2020); translation from Teor. Jmovirn. Mat. Stat. 101, 78-92 (2019). MSC: 60K05 60J10 PDFBibTeX XMLCite \textit{V. V. Golomozyĭ}, Theory Probab. Math. Stat. 101, 85--101 (2020; Zbl 1455.60119); translation from Teor. Jmovirn. Mat. Stat. 101, 78--92 (2019) Full Text: DOI
Verovkin, G. K.; Marynych, A. V. Stationary limits of shot noise processes. (English. Ukrainian original) Zbl 1455.60120 Theory Probab. Math. Stat. 101, 67-83 (2020); translation from Teor. Jmovirn. Mat. Stat. 101, 63-77 (2019). MSC: 60K05 60F17 60F05 PDFBibTeX XMLCite \textit{G. K. Verovkin} and \textit{A. V. Marynych}, Theory Probab. Math. Stat. 101, 67--83 (2020; Zbl 1455.60120); translation from Teor. Jmovirn. Mat. Stat. 101, 63--77 (2019) Full Text: DOI
Morvai, Gusztáv; Weiss, Benjamin Universal rates for estimating the residual waiting time in an intermittent way. (English) Zbl 1474.60203 Kybernetika 56, No. 4, 601-616 (2020). Reviewer: Ilie Valuşescu (Bucureşti) MSC: 60K05 60G25 PDFBibTeX XMLCite \textit{G. Morvai} and \textit{B. Weiss}, Kybernetika 56, No. 4, 601--616 (2020; Zbl 1474.60203) Full Text: DOI Link
Logachëv, Artëm Vasil’evich V.; Mogul’skiĭ, Anatoliĭ Al’fredovich Local theorems for finite-dimensional increments of compound multidimensional arithmetic renewal processes with light tails. (Russian. English summary) Zbl 1454.60137 Sib. Èlektron. Mat. Izv. 17, 1766-1786 (2020). MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{A. V. V. Logachëv} and \textit{A. A. Mogul'skiĭ}, Sib. Èlektron. Mat. Izv. 17, 1766--1786 (2020; Zbl 1454.60137) Full Text: DOI
Bakay, Gavriil A.; Shklyaev, Aleksandr V. Large deviations of generalized renewal process. (English. Russian original) Zbl 1456.60233 Discrete Math. Appl. 30, No. 4, 215-241 (2020); translation from Diskretn. Mat. 31, No. 1, 21-55 (2019). MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{G. A. Bakay} and \textit{A. V. Shklyaev}, Discrete Math. Appl. 30, No. 4, 215--241 (2020; Zbl 1456.60233); translation from Diskretn. Mat. 31, No. 1, 21--55 (2019) Full Text: DOI
Michelitsch, Thomas M.; Riascos, Alejandro P. Generalized fractional Poisson process and related stochastic dynamics. (English) Zbl 1474.60202 Fract. Calc. Appl. Anal. 23, No. 3, 656-693 (2020). MSC: 60K05 60G22 PDFBibTeX XMLCite \textit{T. M. Michelitsch} and \textit{A. P. Riascos}, Fract. Calc. Appl. Anal. 23, No. 3, 656--693 (2020; Zbl 1474.60202) Full Text: DOI arXiv
Bektaş Kamişlik, Aslı; Alakoç, Büşra; Kesemen, Tülay; Khaniyev, Tahir A semi-Markovian renewal reward process with \(\Gamma(g)\) distributed demand. (English) Zbl 1455.60117 Turk. J. Math. 44, No. 4, 1250-1262 (2020). MSC: 60K05 60K15 PDFBibTeX XMLCite \textit{A. Bektaş Kamişlik} et al., Turk. J. Math. 44, No. 4, 1250--1262 (2020; Zbl 1455.60117) Full Text: DOI
Denisov, Denis; Korshunov, Dmitry; Wachtel, Vitali Renewal theory for transient Markov chains with asymptotically zero drift. (English) Zbl 1454.60136 Trans. Am. Math. Soc. 373, No. 10, 7253-7286 (2020). MSC: 60K05 60J05 60G42 PDFBibTeX XMLCite \textit{D. Denisov} et al., Trans. Am. Math. Soc. 373, No. 10, 7253--7286 (2020; Zbl 1454.60136) Full Text: DOI arXiv Link
Kumar, Nitin; Barbhuiya, Farida P.; Gupta, Umesh C. Analysis of a geometric catastrophe model with discrete-time batch renewal arrival process. (English) Zbl 1448.60177 RAIRO, Oper. Res. 54, No. 5, 1249-1268 (2020). MSC: 60K05 60H35 PDFBibTeX XMLCite \textit{N. Kumar} et al., RAIRO, Oper. Res. 54, No. 5, 1249--1268 (2020; Zbl 1448.60177) Full Text: DOI
Borovkov, Aleksandr Alekseevich Sharp asymptotics for the Laplace transform of the compound renewal process and related problems. (Russian. English summary) Zbl 1445.60066 Sib. Èlektron. Mat. Izv. 17, 824-839 (2020). MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{A. A. Borovkov}, Sib. Èlektron. Mat. Izv. 17, 824--839 (2020; Zbl 1445.60066) Full Text: DOI
Borovkov, A. A. Boundary crossing problems for compound renewal processes. (English. Russian original) Zbl 1448.60176 Sib. Math. J. 61, No. 1, 21-46 (2020); translation from Sib. Mat. Zh. 61, No. 1, 29-59 (2020). MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{A. A. Borovkov}, Sib. Math. J. 61, No. 1, 21--46 (2020; Zbl 1448.60176); translation from Sib. Mat. Zh. 61, No. 1, 29--59 (2020) Full Text: DOI
Doney, Ron The remainder in the renewal theorem. (English) Zbl 1434.60251 Electron. Commun. Probab. 25, Paper No. 5, 8 p. (2020); erratum ibid. 27, Paper No. 17, 5 p. (2022). MSC: 60K05 60G50 PDFBibTeX XMLCite \textit{R. Doney}, Electron. Commun. Probab. 25, Paper No. 5, 8 p. (2020; Zbl 1434.60251) Full Text: DOI arXiv Euclid
Li, Rong; Bi, Xiuchun; Zhang, Shuguang Several properties of a nonstandard renewal counting process and their applications. (English) Zbl 1445.60067 J. Syst. Sci. Complex. 33, No. 1, 122-136 (2020). MSC: 60K05 PDFBibTeX XMLCite \textit{R. Li} et al., J. Syst. Sci. Complex. 33, No. 1, 122--136 (2020; Zbl 1445.60067) Full Text: DOI
Ekström, Erik; Olofsson, Marcus; Vannestål, Martin A renewal theory approach to two-state switching problems with infinite values. (English) Zbl 1434.60252 J. Appl. Probab. 57, No. 1, 1-18 (2020). MSC: 60K05 93E20 62L15 90C39 91G10 PDFBibTeX XMLCite \textit{E. Ekström} et al., J. Appl. Probab. 57, No. 1, 1--18 (2020; Zbl 1434.60252) Full Text: DOI
Jasiulis-Gołdyn, Barbara H.; Misiewicz, Jolanta K.; Naskręt, Karolina; Omey, Edward Renewal theory for extremal Markov sequences of Kendall type. (English) Zbl 1437.60057 Stochastic Processes Appl. 130, No. 6, 3277-3294 (2020). MSC: 60K05 60J20 60K15 PDFBibTeX XMLCite \textit{B. H. Jasiulis-Gołdyn} et al., Stochastic Processes Appl. 130, No. 6, 3277--3294 (2020; Zbl 1437.60057) Full Text: DOI arXiv
Angus, John; Ding, Yujia On the ratio of current age to total life for null recurrent renewal processes. (English) Zbl 1437.60056 Stat. Probab. Lett. 162, Article ID 108745, 6 p. (2020). MSC: 60K05 PDFBibTeX XMLCite \textit{J. Angus} and \textit{Y. Ding}, Stat. Probab. Lett. 162, Article ID 108745, 6 p. (2020; Zbl 1437.60056) Full Text: DOI
Borovkov, A. A.; Mogulskii, A. A.; Prokopenko, E. I. Properties of the deviation rate function and the asymptotics for the Laplace transform of the distribution of a compound renewal process. (English. Russian original) Zbl 1432.60080 Theory Probab. Appl. 64, No. 4, 499-512 (2020); translation from Teor. Veroyatn. Primen. 64, No. 4, 625-641 (2019). MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{A. A. Borovkov} et al., Theory Probab. Appl. 64, No. 4, 499--512 (2020; Zbl 1432.60080); translation from Teor. Veroyatn. Primen. 64, No. 4, 625--641 (2019) Full Text: DOI
Karamzadeh, M.; Soltani, A. R.; Mardani-Fard, H. A. On a class of spatial renewal processes: renewal processes synchronization probabilities. (English) Zbl 1441.60073 Stat. Probab. Lett. 158, Article ID 108658, 8 p. (2020). Reviewer: Edward Omey (Brussels) MSC: 60K05 60K10 40E05 PDFBibTeX XMLCite \textit{M. Karamzadeh} et al., Stat. Probab. Lett. 158, Article ID 108658, 8 p. (2020; Zbl 1441.60073) Full Text: DOI
Mogul’skiĭ, Anatoliĭ Al’fredovich; Prokopenko, Evgeniĭ Igorevich Local theorems for arithmetic multidimensional compound renewal processes under Cramér’s condition. (Russian) Zbl 1492.60246 Mat. Tr. 22, No. 2, 106-133 (2019). MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{A. A. Mogul'skiĭ} and \textit{E. I. Prokopenko}, Mat. Tr. 22, No. 2, 106--133 (2019; Zbl 1492.60246) Full Text: DOI MNR
Kim, James J.; Chaudhry, Mohan L.; Mansur, Abdalla Asymptotic results for the first and second moments and numerical computations in discrete-time bulk-renewal process. (English) Zbl 1474.60201 Yugosl. J. Oper. Res. 29, No. 1, 135-144 (2019). MSC: 60K05 62E20 60K25 PDFBibTeX XMLCite \textit{J. J. Kim} et al., Yugosl. J. Oper. Res. 29, No. 1, 135--144 (2019; Zbl 1474.60201) Full Text: DOI
Bayramov, V. On the mathematical expectation of the renewal-reward process. (English) Zbl 1463.60110 J. Contemp. Appl. Math. 9, No. 2, 93-98 (2019). MSC: 60K05 PDFBibTeX XMLCite \textit{V. Bayramov}, J. Contemp. Appl. Math. 9, No. 2, 93--98 (2019; Zbl 1463.60110) Full Text: Link
Abdullayeva, Narmina On ergodic distribution a cyclical inventory-queuing model with delay. (English) Zbl 1463.60108 J. Contemp. Appl. Math. 9, No. 1, 3-9 (2019). MSC: 60K05 90B05 60K20 PDFBibTeX XMLCite \textit{N. Abdullayeva}, J. Contemp. Appl. Math. 9, No. 1, 3--9 (2019; Zbl 1463.60108) Full Text: Link
Borovkov, A. A. On large deviation principles for compound renewal processes. (English. Russian original) Zbl 1441.60072 Math. Notes 106, No. 6, 864-871 (2019); translation from Mat. Zametki 106, No. 6, 811-820 (2019). MSC: 60K05 PDFBibTeX XMLCite \textit{A. A. Borovkov}, Math. Notes 106, No. 6, 864--871 (2019; Zbl 1441.60072); translation from Mat. Zametki 106, No. 6, 811--820 (2019) Full Text: DOI
Jacobovic, Royi; Kella, Offer Asymptotic independence of regenerative processes with a special dependence structure. (English) Zbl 1431.60105 Queueing Syst. 93, No. 1-2, 139-152 (2019). MSC: 60K05 60K25 60G51 90B15 PDFBibTeX XMLCite \textit{R. Jacobovic} and \textit{O. Kella}, Queueing Syst. 93, No. 1--2, 139--152 (2019; Zbl 1431.60105) Full Text: DOI
McHardy, Isaias; Nizama, Marco; Budini, Adrian A.; Cáceres, Manuel O. Intermittent waiting-time noises through embedding processes. (English) Zbl 1427.60181 J. Stat. Phys. 177, No. 4, 608-625 (2019). MSC: 60K05 PDFBibTeX XMLCite \textit{I. McHardy} et al., J. Stat. Phys. 177, No. 4, 608--625 (2019; Zbl 1427.60181) Full Text: DOI
Mogul’skiĭ, Anatoliĭ Al’fredovich; Prokopenko, Evgeniĭ Igor’evich Large deviation principle for multidimensional second compound renewal processes in the phase space. (Russian. English summary) Zbl 1423.60133 Sib. Èlektron. Mat. Izv. 16, 1478-1492 (2019). MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{A. A. Mogul'skiĭ} and \textit{E. I. Prokopenko}, Sib. Èlektron. Mat. Izv. 16, 1478--1492 (2019; Zbl 1423.60133) Full Text: DOI
Mogul’skiĭ, Anatoliĭ Al’fredovich; Prokopenko, Evgeniĭ Igor’evich Large deviation principle for multidimensional first compound renewal processes in the phase space. (Russian. English summary) Zbl 1423.60132 Sib. Èlektron. Mat. Izv. 16, 1464-1477 (2019). MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{A. A. Mogul'skiĭ} and \textit{E. I. Prokopenko}, Sib. Èlektron. Mat. Izv. 16, 1464--1477 (2019; Zbl 1423.60132) Full Text: DOI
Mogul’skiĭ, Anatoliĭ Al’fredovich; Prokopenko, Evgeniĭ Igor’evich The rate function and the fundamental function for multidimensional compound renewal process. (Russian. English summary) Zbl 1423.60131 Sib. Èlektron. Mat. Izv. 16, 1449-1463 (2019). MSC: 60K05 60F10 PDFBibTeX XMLCite \textit{A. A. Mogul'skiĭ} and \textit{E. I. Prokopenko}, Sib. Èlektron. Mat. Izv. 16, 1449--1463 (2019; Zbl 1423.60131) Full Text: DOI
Jordanova, Pavlina; Stehlík, Milan P-thinned gamma process and corresponding random walk. (English) Zbl 1434.60253 Dimov, Ivan (ed.) et al., Finite difference methods. Theory and applications. 7th international conference, FDM 2018, Lozenetz, Bulgaria, June 11–16, 2018. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 11386, 297-304 (2019). MSC: 60K05 60-08 PDFBibTeX XMLCite \textit{P. Jordanova} and \textit{M. Stehlík}, Lect. Notes Comput. Sci. 11386, 297--304 (2019; Zbl 1434.60253) Full Text: DOI
Caravenna, Francesco; Sun, Rongfeng; Zygouras, Nikos The Dickman subordinator, renewal theorems, and disordered systems. (English) Zbl 1466.60182 Electron. J. Probab. 24, Paper No. 101, 40 p. (2019). MSC: 60K05 82B44 60G51 PDFBibTeX XMLCite \textit{F. Caravenna} et al., Electron. J. Probab. 24, Paper No. 101, 40 p. (2019; Zbl 1466.60182) Full Text: DOI arXiv Euclid
Hadjicostas, Petros Generalizations of the arithmetic case of Blackwell’s renewal theorem. (English) Zbl 1459.60184 Stat. Probab. Lett. 149, 124-131 (2019). MSC: 60K05 PDFBibTeX XMLCite \textit{P. Hadjicostas}, Stat. Probab. Lett. 149, 124--131 (2019; Zbl 1459.60184) Full Text: DOI
Soltani, Mohammad; Singh, Abhyudai Moment analysis of linear time-varying dynamical systems with renewal transitions. (English) Zbl 1420.60113 SIAM J. Control Optim. 57, No. 4, 2660-2685 (2019). MSC: 60K05 60K15 93E03 93E15 PDFBibTeX XMLCite \textit{M. Soltani} and \textit{A. Singh}, SIAM J. Control Optim. 57, No. 4, 2660--2685 (2019; Zbl 1420.60113) Full Text: DOI arXiv
Gorenflo, R.; Mainardi, F. The Mittag-Leffler function in the thinning theory for renewal processes. (English) Zbl 1422.60152 Theory Probab. Math. Stat. 98, 105-113 (2019) and Teor. Jmovirn. Mat. Stat. 98, 100-108 (2018). MSC: 60K05 60K25 33E12 PDFBibTeX XMLCite \textit{R. Gorenflo} and \textit{F. Mainardi}, Theory Probab. Math. Stat. 98, 105--113 (2019; Zbl 1422.60152) Full Text: DOI arXiv
Yao, Kai First hitting time of uncertain random renewal reward process and its application in insurance risk process. (English) Zbl 1418.60113 Soft Comput. 23, No. 11, 3687-3696 (2019). MSC: 60K05 60K10 60A86 91B30 PDFBibTeX XMLCite \textit{K. Yao}, Soft Comput. 23, No. 11, 3687--3696 (2019; Zbl 1418.60113) Full Text: DOI
Caravenna, Francesco; Doney, Ron Local large deviations and the strong renewal theorem. (English) Zbl 1467.60068 Electron. J. Probab. 24, Paper No. 72, 48 p. (2019). MSC: 60K05 60G50 60F10 PDFBibTeX XMLCite \textit{F. Caravenna} and \textit{R. Doney}, Electron. J. Probab. 24, Paper No. 72, 48 p. (2019; Zbl 1467.60068) Full Text: DOI arXiv Euclid