Tan, Tan; Liu, Hongliang; Bu, Weiping L1-FEM discretizations for two-dimensional multiterm fractional delay diffusion equations. (English) Zbl 07912572 Commun. Nonlinear Sci. Numer. Simul. 139, Article ID 108285, 16 p. (2024). MSC: 65M60 65M06 65N30 65M12 65M15 35C05 35B65 35A21 33E12 35R07 26A33 35R11 PDFBibTeX XMLCite \textit{T. Tan} et al., Commun. Nonlinear Sci. Numer. Simul. 139, Article ID 108285, 16 p. (2024; Zbl 07912572) Full Text: DOI
Ali, Mulugeta Dawud; Suthar, D. L. On the fractional \(q\)-integral operators involving \(q\)-analogue of Mittag-Leffler function. (English) Zbl 07912331 Analysis, München 44, No. 3, 245-251 (2024). MSC: 33D60 33E12 33D90 26A33 45P05 47G10 PDFBibTeX XMLCite \textit{M. D. Ali} and \textit{D. L. Suthar}, Analysis, München 44, No. 3, 245--251 (2024; Zbl 07912331) Full Text: DOI
Ilyas, Asim; Malik, Salman A. Direct and some inverse problems for a generalized diffusion equation with variable coefficients. (English) Zbl 07910911 Comput. Appl. Math. 43, No. 6, Paper No. 364, 26 p. (2024). MSC: 26A33 80A23 65N21 42A16 33E12 PDFBibTeX XMLCite \textit{A. Ilyas} and \textit{S. A. Malik}, Comput. Appl. Math. 43, No. 6, Paper No. 364, 26 p. (2024; Zbl 07910911) Full Text: DOI OA License
Panwar, Savita; Rai, Prakriti; Pandey, Rupakshi Mishra A new generalized beta function associated with statistical distribution and fractional kinetic equation. (English) Zbl 07905405 Bol. Soc. Parana. Mat. (3) 42, Paper No. 126, 15 p. (2024). MSC: 26A33 33B15 33C05 33C15 33C90 33E12 60E10 62E15 PDFBibTeX XMLCite \textit{S. Panwar} et al., Bol. Soc. Parana. Mat. (3) 42, Paper No. 126, 15 p. (2024; Zbl 07905405) Full Text: DOI
Feng, Wei; Chen, Pengyu Non-autonomous fractional nonlocal evolution equations with superlinear growth nonlinearities. (English) Zbl 07903718 Appl. Math. Lett. 157, Article ID 109202, 6 p. (2024). MSC: 26A33 37B55 35K55 33E12 PDFBibTeX XMLCite \textit{W. Feng} and \textit{P. Chen}, Appl. Math. Lett. 157, Article ID 109202, 6 p. (2024; Zbl 07903718) Full Text: DOI
Akbar, Saira Bano; Abbas, Mujahid; Budak, Hüseyin Generalization of quantum calculus and corresponding Hermite-Hadamard inequalities. (English) Zbl 07901596 Anal. Math. Phys. 14, No. 5, Paper No. 99, 20 p. (2024). MSC: 26A51 26A33 33E12 PDFBibTeX XMLCite \textit{S. B. Akbar} et al., Anal. Math. Phys. 14, No. 5, Paper No. 99, 20 p. (2024; Zbl 07901596) Full Text: DOI OA License
Pariyar, Shankar; Kafle, Jeevan Generalizing the Mittag-Leffler function for fractional differentiation and numerical computation. (English) Zbl 07900189 Nepali Math. Sci. Rep. 41, No. 1, 1-14 (2024). MSC: 33E12 26A33 65R10 65D20 34A08 PDFBibTeX XMLCite \textit{S. Pariyar} and \textit{J. Kafle}, Nepali Math. Sci. Rep. 41, No. 1, 1--14 (2024; Zbl 07900189) Full Text: DOI
Thomas, Reetha; Bakkyaraj, T. Lie symmetry analysis of time fractional nonlinear partial differential equations in Hilfer sense. (English) Zbl 07899243 Comput. Appl. Math. 43, No. 6, Paper No. 353, 26 p. (2024). MSC: 26A33 35R11 33E12 34A08 76M60 PDFBibTeX XMLCite \textit{R. Thomas} and \textit{T. Bakkyaraj}, Comput. Appl. Math. 43, No. 6, Paper No. 353, 26 p. (2024; Zbl 07899243) Full Text: DOI
Hristova, S.; Abbas, M. I. Ulam type stability analysis for generalized proportional fractional differential equations. (English) Zbl 07898622 Carpathian Math. Publ. 16, No. 1, 114-127 (2024). MSC: 26A33 34A08 33E12 PDFBibTeX XMLCite \textit{S. Hristova} and \textit{M. I. Abbas}, Carpathian Math. Publ. 16, No. 1, 114--127 (2024; Zbl 07898622) Full Text: DOI OA License
Caratelli, Diego; Ricci, Paolo Emilio A note on fractional-type models of population dynamics. (English) Zbl 07895292 Math. Model. Anal. 29, No. 3, 480-492 (2024). MSC: 26A33 33B10 33E12 34A08 92D25 PDFBibTeX XMLCite \textit{D. Caratelli} and \textit{P. E. Ricci}, Math. Model. Anal. 29, No. 3, 480--492 (2024; Zbl 07895292) Full Text: DOI
Awadalla, Muath; Mahmudov, Nazim I.; Alahmadi, Jihan A novel delayed discrete fractional Mittag-Leffler function: representation and stability of delayed fractional difference system. (English) Zbl 07893830 J. Appl. Math. Comput. 70, No. 2, 1571-1599 (2024). MSC: 33E12 26A33 33E30 39A30 PDFBibTeX XMLCite \textit{M. Awadalla} et al., J. Appl. Math. Comput. 70, No. 2, 1571--1599 (2024; Zbl 07893830) Full Text: DOI
Elidemir, İlkay Onbaşı; Özarslan, Mehmet Ali; Buranay, Suzan Cival On the analysis of fractional calculus operators with bivariate Mittag Leffler function in the kernel. (English) Zbl 07893819 J. Appl. Math. Comput. 70, No. 2, 1295-1323 (2024). MSC: 33E12 26A33 PDFBibTeX XMLCite \textit{İ. O. Elidemir} et al., J. Appl. Math. Comput. 70, No. 2, 1295--1323 (2024; Zbl 07893819) Full Text: DOI OA License
Gurjar, Meena Kumari; Rathour, Laxmi; Mishra, Lakshmi Narayan; Chhattry, Preeti A study of \(N\)-fractional calculus for the generalized Hurwitz-Lerch zeta function and Mittag-Leffler function. (English) Zbl 07893480 J. Fract. Calc. Appl. 15, No. 1, Paper No. 6, 8 p. (2024). MSC: 11M35 26A33 33E12 PDFBibTeX XMLCite \textit{M. K. Gurjar} et al., J. Fract. Calc. Appl. 15, No. 1, Paper No. 6, 8 p. (2024; Zbl 07893480) Full Text: DOI
Chaudhary, K. K.; Rao, S. B. A study on unification of generalized hypergeometric function and Mittag-Leffler function with certain integral transforms of generalized basic hypergeometric function. (English) Zbl 07889798 Res. Math. 32, No. 1, 16-32 (2024). MSC: 33D15 05A30 33E12 44A20 PDFBibTeX XMLCite \textit{K. K. Chaudhary} and \textit{S. B. Rao}, Res. Math. 32, No. 1, 16--32 (2024; Zbl 07889798) Full Text: DOI
Shankar, Matap; Bora, Swaroop Nandan Ulam-Hyers stability of non-instantaneous impulsive integro-differential equation of real-order with Caputo derivative with application to circuits. (English) Zbl 07887378 J. Nonlinear Evol. Equ. Appl. 2024, 45-65 (2024). MSC: 26A33 33E12 34A08 35R12 47N70 PDFBibTeX XMLCite \textit{M. Shankar} and \textit{S. N. Bora}, J. Nonlinear Evol. Equ. Appl. 2024, 45--65 (2024; Zbl 07887378) Full Text: Link
Shit, Abhijit; Bora, Swaroop Nandan Incorporation of concentration gradient of blood nutrients in erythrocyte sedimentation rate fractional model with non-zero uniform average blood velocity. (English) Zbl 07883086 Math. Methods Appl. Sci. 47, No. 12, 10334-10350 (2024). MSC: 26A06 26A33 33E12 35R11 PDFBibTeX XMLCite \textit{A. Shit} and \textit{S. N. Bora}, Math. Methods Appl. Sci. 47, No. 12, 10334--10350 (2024; Zbl 07883086) Full Text: DOI
Almuqrin, Muqrin A.; Riahi, Anis; Rguigui, Hafedh Polynomial sequences associated with the fractional Pascal measure. (English) Zbl 07870888 Integral Transforms Spec. Funct. 35, No. 5-6, 339-355 (2024). MSC: 11C08 26C05 42C05 33E12 60J45 PDFBibTeX XMLCite \textit{M. A. Almuqrin} et al., Integral Transforms Spec. Funct. 35, No. 5--6, 339--355 (2024; Zbl 07870888) Full Text: DOI
Faustino, Nelson On fundamental solutions of higher-order space-fractional Dirac equations. (English) Zbl 07869454 Math. Methods Appl. Sci. 47, No. 10, 7988-8001 (2024). MSC: 30G35 26A33 35S30 33E12 35S10 35S10 PDFBibTeX XMLCite \textit{N. Faustino}, Math. Methods Appl. Sci. 47, No. 10, 7988--8001 (2024; Zbl 07869454) Full Text: DOI arXiv
Ahmad, Anwar; Ali, Muhammad; Malik, Salman A. Unraveling forward and backward source problems for a nonlocal integrodifferential equation: a journey through operational calculus for Dzherbashian-Nersesian operator. (English) Zbl 07869432 Math. Methods Appl. Sci. 47, No. 9, 7669-7683 (2024). MSC: 26A33 33E12 35R30 44A40 PDFBibTeX XMLCite \textit{A. Ahmad} et al., Math. Methods Appl. Sci. 47, No. 9, 7669--7683 (2024; Zbl 07869432) Full Text: DOI arXiv
Mariano-Morales, Jesús; Vivas-Cruz, Luis Xavier; Taneco-Hernández, Marco Antonio Initial-boundary value and interface problems on the real half line for the fractional advection-diffusion-type equation. (English) Zbl 07869376 Math. Methods Appl. Sci. 47, No. 7, 6234-6271 (2024). MSC: 33E12 35A25 35R11 PDFBibTeX XMLCite \textit{J. Mariano-Morales} et al., Math. Methods Appl. Sci. 47, No. 7, 6234--6271 (2024; Zbl 07869376) Full Text: DOI
Ilyas, Asim; Khalid, Rooh A.; Malik, Salman A. Identifying temperature distribution and source term for generalized diffusion equation with arbitrary memory kernel. (English) Zbl 07869359 Math. Methods Appl. Sci. 47, No. 7, 5894-5915 (2024). MSC: 26A33 80A23 65N21 42A16 33E12 PDFBibTeX XMLCite \textit{A. Ilyas} et al., Math. Methods Appl. Sci. 47, No. 7, 5894--5915 (2024; Zbl 07869359) Full Text: DOI
Rasheed, Maryam K.; Majeed, Abdulrahman H. New seven-parameter Mittag-Leffler function with certain analytic properties. (English) Zbl 07868034 Nonlinear Funct. Anal. Appl. 29, No. 1, 99-111 (2024). MSC: 33E12 30D10 30D20 PDFBibTeX XMLCite \textit{M. K. Rasheed} and \textit{A. H. Majeed}, Nonlinear Funct. Anal. Appl. 29, No. 1, 99--111 (2024; Zbl 07868034) Full Text: Link
Sheremet’eva, Ol’ga Vladimirovna; Shevtsov, Boris Mikhaĭlovich Application of the Hereditarian criticality model to the study of the characteristics of the seismic process of the Kuril-Kamchatka island arc subduction zone. (Russian. English summary) Zbl 07864147 Vestn. KRAUNTS, Fiz.-Mat. Nauki 46, No. 1, 89-101 (2024). MSC: 37M10 33E12 PDFBibTeX XMLCite \textit{O. V. Sheremet'eva} and \textit{B. M. Shevtsov}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 46, No. 1, 89--101 (2024; Zbl 07864147) Full Text: DOI MNR
Asadzade, Javad A.; Mahmudov, Nazim I. Delayed analogue of three-parameter pseudo-Mittag-Leffler functions and their applications to Hilfer pseudo-fractional time retarded differential equations. (English) Zbl 07860718 J. Math. Phys. 65, No. 5, Article ID 052701, 23 p. (2024). MSC: 34K37 34K20 33E12 26A33 PDFBibTeX XMLCite \textit{J. A. Asadzade} and \textit{N. I. Mahmudov}, J. Math. Phys. 65, No. 5, Article ID 052701, 23 p. (2024; Zbl 07860718) Full Text: DOI
Bui, Duc Nam; Nghia, Bui Dai; Phuong, Nguyen Duc Regularity and convergent result of mild solution of Love equation. (English) Zbl 07856216 Discrete Contin. Dyn. Syst., Ser. S 17, No. 3, 1178-1194 (2024). MSC: 35B65 35B40 35R11 26A33 33E12 44A20 PDFBibTeX XMLCite \textit{D. N. Bui} et al., Discrete Contin. Dyn. Syst., Ser. S 17, No. 3, 1178--1194 (2024; Zbl 07856216) Full Text: DOI
Duc, Phuong Nguyen; Van, Tien Nguyen; Anh, Tuan Nguyen On a non-local Kirchhoff type equation with random terminal observation. (English) Zbl 07856207 Discrete Contin. Dyn. Syst., Ser. S 17, No. 3, 1011-1027 (2024). MSC: 35R11 35K20 35K59 33E12 44A20 PDFBibTeX XMLCite \textit{P. N. Duc} et al., Discrete Contin. Dyn. Syst., Ser. S 17, No. 3, 1011--1027 (2024; Zbl 07856207) Full Text: DOI
Aydin, Mustafa Langevin delayed equations with Prabhakar derivatives involving two generalized fractional distinct orders. (English) Zbl 07854327 Turk. J. Math. 48, No. 2, 144-162 (2024). MSC: 34K37 33E12 44A10 PDFBibTeX XMLCite \textit{M. Aydin}, Turk. J. Math. 48, No. 2, 144--162 (2024; Zbl 07854327) Full Text: DOI
Ain, Qura Tul; Khan, Aziz; Abdeljawad, Thabet; Gómez-Aguilar, J. F.; Riaz, Saleem Dynamical study of varicella-zoster virus model in sense of Mittag-Leffler kernel. (English) Zbl 07852501 Int. J. Biomath. 17, No. 3, Article ID 2350027, 31 p. (2024). MSC: 92D30 92C60 33E12 34A08 PDFBibTeX XMLCite \textit{Q. T. Ain} et al., Int. J. Biomath. 17, No. 3, Article ID 2350027, 31 p. (2024; Zbl 07852501) Full Text: DOI
Ayadi, Mohamed; Riahi, Anis; Rhaima, Mohamed; Ghoudi, Hamza Fractional gamma noise functionals. (English) Zbl 07852105 Complex Anal. Oper. Theory 18, No. 4, Paper No. 92, 22 p. (2024). MSC: 11C08 26C05 42C05 46F25 60G22 33E12 PDFBibTeX XMLCite \textit{M. Ayadi} et al., Complex Anal. Oper. Theory 18, No. 4, Paper No. 92, 22 p. (2024; Zbl 07852105) Full Text: DOI
Aragones, Ernes; Keyantuo, Valentin; Warma, Mahamadi Memory approximate controllability properties for higher order Hilfer time-fractional evolution equations. (English) Zbl 1539.93019 Evol. Equ. Control Theory 13, No. 2, 616-643 (2024). MSC: 93B05 93C20 35R11 33E12 PDFBibTeX XMLCite \textit{E. Aragones} et al., Evol. Equ. Control Theory 13, No. 2, 616--643 (2024; Zbl 1539.93019) Full Text: DOI arXiv
Baghani, Hamid; Salem, Ahmed Solvability and stability of a class of fractional Langevin differential equations with the Mittag-Leffler function. (English) Zbl 07845691 Bol. Soc. Mat. Mex., III. Ser. 30, No. 2, Paper No. 46, 18 p. (2024). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 26A33 34A12 34A25 33E12 47H10 PDFBibTeX XMLCite \textit{H. Baghani} and \textit{A. Salem}, Bol. Soc. Mat. Mex., III. Ser. 30, No. 2, Paper No. 46, 18 p. (2024; Zbl 07845691) Full Text: DOI
Liu, Jiangen; Geng, Fazhan An explanation on four new definitions of fractional operators. (English) Zbl 07844459 Acta Math. Sci., Ser. B, Engl. Ed. 44, No. 4, 1271-1279 (2024). MSC: 33E12 33E20 47A57 PDFBibTeX XMLCite \textit{J. Liu} and \textit{F. Geng}, Acta Math. Sci., Ser. B, Engl. Ed. 44, No. 4, 1271--1279 (2024; Zbl 07844459) Full Text: DOI
Selvam, Anjapuli Panneer; Govindaraj, Venkatesan Controllability results for \(\psi\)-Caputo fractional differential systems with impulsive effects. (English) Zbl 07843979 Qual. Theory Dyn. Syst. 23, No. 4, Paper No. 166, 26 p. (2024). MSC: 34A08 34A37 93B05 34A30 34A34 47H10 33E12 PDFBibTeX XMLCite \textit{A. P. Selvam} and \textit{V. Govindaraj}, Qual. Theory Dyn. Syst. 23, No. 4, Paper No. 166, 26 p. (2024; Zbl 07843979) Full Text: DOI
Hamiaz, A. Lyapunov-type inequality and existence of solution for a nonlinear fractional differential equation with anti-periodic boundary conditions. (English) Zbl 07843598 Math. Sci., Springer 18, No. 1, 79-90 (2024). Reviewer: Wengui Yang (Sanmenxia) MSC: 34A08 34B15 26D10 33E12 PDFBibTeX XMLCite \textit{A. Hamiaz}, Math. Sci., Springer 18, No. 1, 79--90 (2024; Zbl 07843598) Full Text: DOI
Li, Chenkuan; Saadati, Reza; Mottaghi, Fatemeh; Ghaemi, Mohammad Bagher Existence of solutions for the nonlinear integro-differential system. (English) Zbl 07843591 Math. Sci., Springer 18, No. 1, 1-8 (2024). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45J05 45G15 26A33 33E12 47N20 47H10 PDFBibTeX XMLCite \textit{C. Li} et al., Math. Sci., Springer 18, No. 1, 1--8 (2024; Zbl 07843591) Full Text: DOI
Rogosin, Sergei; Dubatovskaya, Maryna Multi-parametric Le Roy function revisited. (English) Zbl 1537.33016 Fract. Calc. Appl. Anal. 27, No. 1, 64-81 (2024). MSC: 33C47 26A33 33E12 44A15 PDFBibTeX XMLCite \textit{S. Rogosin} and \textit{M. Dubatovskaya}, Fract. Calc. Appl. Anal. 27, No. 1, 64--81 (2024; Zbl 1537.33016) Full Text: DOI
Dwivedi, Ravi; Sanjhira, Reshma On the \(q\)-hypergeometric matrix function \({}_r \Phi_s(A, B; C_i; D_j; q; z)\) and its \(q\)-fractional calculus. (English) Zbl 07831864 J. Indian Math. Soc., New Ser. 91, No. 1-2, 11-24 (2024). MSC: 15A15 33E12 33D15 PDFBibTeX XMLCite \textit{R. Dwivedi} and \textit{R. Sanjhira}, J. Indian Math. Soc., New Ser. 91, No. 1--2, 11--24 (2024; Zbl 07831864) Full Text: DOI
Chand, Mehar; Özer, Özen; Prajapati, Jyotindra C. Solution of generalized fractional kinetic equations with generalized Mathieu series. (English) Zbl 1540.34146 Georgian Math. J. 31, No. 2, 187-193 (2024). MSC: 34K37 34K06 44A15 33E12 PDFBibTeX XMLCite \textit{M. Chand} et al., Georgian Math. J. 31, No. 2, 187--193 (2024; Zbl 1540.34146) Full Text: DOI
Cinque, Fabrizio; Orsingher, Enzo Analysis of fractional Cauchy problems with some probabilistic applications. (English) Zbl 1533.60065 J. Math. Anal. Appl. 536, No. 1, Article ID 128188, 23 p. (2024). MSC: 60G52 26A33 33E12 60E07 60G51 PDFBibTeX XMLCite \textit{F. Cinque} and \textit{E. Orsingher}, J. Math. Anal. Appl. 536, No. 1, Article ID 128188, 23 p. (2024; Zbl 1533.60065) Full Text: DOI arXiv OA License
Jonnalagadda, Jagan Mohan A short note on Lyapunov-type inequalities for Hilfer fractional boundary value problems. (English) Zbl 1534.34009 Appl. Math. E-Notes 24, 35-45 (2024). MSC: 34A08 34A40 26D10 33E12 34C10 PDFBibTeX XMLCite \textit{J. M. Jonnalagadda}, Appl. Math. E-Notes 24, 35--45 (2024; Zbl 1534.34009) Full Text: arXiv Link
Raza, Nusrat; Zainab, Umme Mittag-Leffler-Gould-Hopper polynomials: symbolic approach. (English) Zbl 07825921 Rend. Circ. Mat. Palermo (2) 73, No. 3, 1009-1036 (2024). MSC: 33F10 33E12 33C45 PDFBibTeX XMLCite \textit{N. Raza} and \textit{U. Zainab}, Rend. Circ. Mat. Palermo (2) 73, No. 3, 1009--1036 (2024; Zbl 07825921) Full Text: DOI
Boiti, Chiara; Franceschi, Jonathan Integral transforms suitable for solving fractional differential equations. (English) Zbl 1534.42006 Arab. J. Math. 13, No. 1, 79-89 (2024). MSC: 42A38 26A33 35A22 47G10 33E12 PDFBibTeX XMLCite \textit{C. Boiti} and \textit{J. Franceschi}, Arab. J. Math. 13, No. 1, 79--89 (2024; Zbl 1534.42006) Full Text: DOI OA License
Mehrez, Sana; Miraoui, Mohsen; Agarwal, Praveen Expansion formulas for a class of function related to incomplete Fox-Wright function. (English) Zbl 1540.33013 Bol. Soc. Mat. Mex., III. Ser. 30, No. 1, Paper No. 22, 18 p. (2024). Reviewer: Fahreddin Abdullayev (Mersin) MSC: 33C47 33B20 33E12 33E30 30C45 26A33 PDFBibTeX XMLCite \textit{S. Mehrez} et al., Bol. Soc. Mat. Mex., III. Ser. 30, No. 1, Paper No. 22, 18 p. (2024; Zbl 1540.33013) Full Text: DOI
He, Jia Wei; Zhou, Yong Non-autonomous fractional Cauchy problems with almost sectorial operators. (English) Zbl 1540.34019 Bull. Sci. Math. 191, Article ID 103395, 45 p. (2024). MSC: 34A08 34G20 34A12 37C60 33E12 47N20 PDFBibTeX XMLCite \textit{J. W. He} and \textit{Y. Zhou}, Bull. Sci. Math. 191, Article ID 103395, 45 p. (2024; Zbl 1540.34019) Full Text: DOI
Sachan, Dheerandra Shanker; Kumar, Dinesh; Sooppy Nisar, Kottakkaran Certain properties associated with generalized \(M\)-series using Hadamard product. (English) Zbl 07807042 Sahand Commun. Math. Anal. 21, No. 1, 151-171 (2024). MSC: 33E20 33C20 33E12 PDFBibTeX XMLCite \textit{D. S. Sachan} et al., Sahand Commun. Math. Anal. 21, No. 1, 151--171 (2024; Zbl 07807042) Full Text: DOI
Hindel, Stefan A generalized kinetic model of fractional order transport dynamics with transit time heterogeneity in microvascular space. (English) Zbl 1534.92024 Bull. Math. Biol. 86, No. 3, Paper No. 26, 44 p. (2024). MSC: 92C35 26A33 33E12 PDFBibTeX XMLCite \textit{S. Hindel}, Bull. Math. Biol. 86, No. 3, Paper No. 26, 44 p. (2024; Zbl 1534.92024) Full Text: DOI
Ilyas, Asim; Iqbal, Zainab; Malik, Salman A. On some direct and inverse problems for an integro-differential equation. (English) Zbl 1540.35467 Z. Angew. Math. Phys. 75, No. 2, Paper No. 39, 27 p. (2024). MSC: 35R30 35R09 33E12 42A16 65N21 80A23 PDFBibTeX XMLCite \textit{A. Ilyas} et al., Z. Angew. Math. Phys. 75, No. 2, Paper No. 39, 27 p. (2024; Zbl 1540.35467) Full Text: DOI
Nair, M. Thamban; Danumjaya, P. A new regularization for time-fractional backward heat conduction problem. (English) Zbl 1532.35534 J. Inverse Ill-Posed Probl. 32, No. 1, 41-56 (2024). MSC: 35R30 35R25 35R11 35K05 26A33 33E12 PDFBibTeX XMLCite \textit{M. T. Nair} and \textit{P. Danumjaya}, J. Inverse Ill-Posed Probl. 32, No. 1, 41--56 (2024; Zbl 1532.35534) Full Text: DOI arXiv
Pal, Ankit Some finite integrals involving Mittag-Leffler confluent hypergeometric function. (English) Zbl 1534.33020 Analysis, München 44, No. 1, 17-24 (2024). MSC: 33E12 33B15 33C05 33C15 PDFBibTeX XMLCite \textit{A. Pal}, Analysis, München 44, No. 1, 17--24 (2024; Zbl 1534.33020) Full Text: DOI
Trofimowicz, Damian; Stefański, Tomasz P.; Gulgowski, Jacek; Talaśka, Tomasz Modelling and simulations in time-fractional electrodynamics based on control engineering methods. (English) Zbl 07801786 Commun. Nonlinear Sci. Numer. Simul. 129, Article ID 107720, 20 p. (2024). MSC: 78M20 78A25 78A40 35A20 93C20 49M41 33E12 65F15 35Q61 26A33 35R11 PDFBibTeX XMLCite \textit{D. Trofimowicz} et al., Commun. Nonlinear Sci. Numer. Simul. 129, Article ID 107720, 20 p. (2024; Zbl 07801786) Full Text: DOI
Alomari, Abedel-Karrem; Abdeljawad, Thabet; Baleanu, Dumitru; Saad, Khaled M.; Al-Mdallal, Qasem M. Numerical solutions of fractional parabolic equations with generalized Mittag-Leffler kernels. (English) Zbl 1531.65209 Numer. Methods Partial Differ. Equations 40, No. 1, Article ID e22699, 25 p. (2024). MSC: 65M99 35R11 35K55 35K15 33E12 PDFBibTeX XMLCite \textit{A.-K. Alomari} et al., Numer. Methods Partial Differ. Equations 40, No. 1, Article ID e22699, 25 p. (2024; Zbl 1531.65209) Full Text: DOI
Ansari, Md Samshad Hussain; Malik, Muslim; Baleanu, Dumitru Controllability of Prabhakar fractional dynamical systems. (English) Zbl 1532.37078 Qual. Theory Dyn. Syst. 23, No. 2, Paper No. 63, 28 p. (2024). MSC: 37N35 33E12 93B05 93C05 93C10 PDFBibTeX XMLCite \textit{M. S. H. Ansari} et al., Qual. Theory Dyn. Syst. 23, No. 2, Paper No. 63, 28 p. (2024; Zbl 1532.37078) Full Text: DOI
Srivastava, H. M.; Bansal, Manish Kumar; Harjule, Priyanka A class of fractional integral operators involving a certain general multiindex Mittag-Leffler function. (English) Zbl 1533.45008 Ukr. Math. J. 75, No. 8, 1255-1271 (2024); and Ukr. Mat. Zh. 75, No. 8, 1096-1112 (2023). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 45P05 45H05 26A33 33E12 PDFBibTeX XMLCite \textit{H. M. Srivastava} et al., Ukr. Math. J. 75, No. 8, 1255--1271 (2024; Zbl 1533.45008) Full Text: DOI
Baghani, Hamid; Nieto, Juan J. Some new properties of the Mittag-Leffler functions and their applications to solvability and stability of a class of fractional Langevin differential equations. (English) Zbl 1540.34011 Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 18, 19 p. (2024). Reviewer: Xiping Liu (Shanghai) MSC: 34A08 34B10 34B08 33E12 34D10 47H10 PDFBibTeX XMLCite \textit{H. Baghani} and \textit{J. J. Nieto}, Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 18, 19 p. (2024; Zbl 1540.34011) Full Text: DOI
Xi, Xuan-Xuan; Zhou, Yong; Hou, Mimi Well-posedness of mild solutions for the fractional Navier-Stokes equations in Besov spaces. (English) Zbl 1525.35196 Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 15, 50 p. (2024). MSC: 35Q30 76D05 35B40 35B65 35A01 35A02 33E12 26A33 35R11 PDFBibTeX XMLCite \textit{X.-X. Xi} et al., Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 15, 50 p. (2024; Zbl 1525.35196) Full Text: DOI
Guérin, Hélène; Laulin, Lucile; Raschel, Kilian; Simon, Thomas On the limit law of the superdiffusive elephant random walk. arXiv:2409.06836 Preprint, arXiv:2409.06836 [math.PR] (2024). MSC: 60K35 60E05 60E10 60G50 40E05 33E12 05A10 BibTeX Cite \textit{H. Guérin} et al., ``On the limit law of the superdiffusive elephant random walk'', Preprint, arXiv:2409.06836 [math.PR] (2024) Full Text: arXiv OA License
González-Santander, Juan Luis; Spada, Giorgio; Mainardi, Francesco; Apelblat, Alexander Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform. arXiv:2408.06369 Preprint, arXiv:2408.06369 [physics.class-ph] (2024). MSC: 33E12 44A10 45D05 BibTeX Cite \textit{J. L. González-Santander} et al., ``Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform'', Preprint, arXiv:2408.06369 [physics.class-ph] (2024) Full Text: DOI arXiv OA License
Kataria, K. K.; Dhillon, M. On the Multivariate Generalized Counting Process and its Time-Changed Variants. arXiv:2407.06156 Preprint, arXiv:2407.06156 [math.PR] (2024). MSC: 60G22 60G52 26A33 33E12 BibTeX Cite \textit{K. K. Kataria} and \textit{M. Dhillon}, ``On the Multivariate Generalized Counting Process and its Time-Changed Variants'', Preprint, arXiv:2407.06156 [math.PR] (2024) Full Text: arXiv OA License
Priyendhu, K. S.; Prakash, P.; Lakshmanan, M. Analytical solutions of higher-dimensional coupled system of nonlinear time-fractional diffusion-convection-wave equations. arXiv:2406.10657 Preprint, arXiv:2406.10657 [math.AP] (2024). MSC: 26A33 35Gxx 44Axx 33E12 BibTeX Cite \textit{K. S. Priyendhu} et al., ``Analytical solutions of higher-dimensional coupled system of nonlinear time-fractional diffusion-convection-wave equations'', Preprint, arXiv:2406.10657 [math.AP] (2024) Full Text: arXiv OA License
Priyendhu, K. S.; Prakash, P.; Lakshmanan, M. On the solutions of coupled nonlinear time-fractional diffusion-reaction system with time delays. arXiv:2406.10008 Preprint, arXiv:2406.10008 [math.AP] (2024). MSC: 26A33 33E12 35Gxx 35Kxx BibTeX Cite \textit{K. S. Priyendhu} et al., ``On the solutions of coupled nonlinear time-fractional diffusion-reaction system with time delays'', Preprint, arXiv:2406.10008 [math.AP] (2024) Full Text: arXiv OA License
Mathai, Arak M.; Haubold, Hans J. Pathway to Fractional Integrals, Fractional Differential Equations and the Role of H-function. arXiv:2405.11050 Preprint, arXiv:2405.11050 [cond-mat.stat-mech] (2024). MSC: 26A33 26B15 33C99 33E12 49K05 62E15 94A15 BibTeX Cite \textit{A. M. Mathai} and \textit{H. J. Haubold}, ``Pathway to Fractional Integrals, Fractional Differential Equations and the Role of H-function'', Preprint, arXiv:2405.11050 [cond-mat.stat-mech] (2024) Full Text: arXiv OA License
Soni, Ritik; Pathak, Ashok Kumar Generalized Fractional Risk Process. arXiv:2405.11033 Preprint, arXiv:2405.11033 [math.PR] (2024). MSC: 60G22 60G55 91B05 60K05 33E12 BibTeX Cite \textit{R. Soni} and \textit{A. K. Pathak}, ``Generalized Fractional Risk Process'', Preprint, arXiv:2405.11033 [math.PR] (2024) Full Text: arXiv OA License
D’Onofrio, G.; Polito, F.; Tomovski, Z. On count data models based on Bernstein functions or their inverses. arXiv:2404.04180 Preprint, arXiv:2404.04180 [math.PR] (2024). MSC: 60E05 62E10 33E12 33B15 BibTeX Cite \textit{G. D'Onofrio} et al., ``On count data models based on Bernstein functions or their inverses'', Preprint, arXiv:2404.04180 [math.PR] (2024) Full Text: arXiv OA License
Sharma, Komal Prasad; Bhargava, Alok; Saini, Omprakash On Fractional Kinetic Equations Involving Srivastava Polynomial. arXiv:2403.20048 Preprint, arXiv:2403.20048 [math-ph] (2024). MSC: 26A33 33E12 33E20 44A99 BibTeX Cite \textit{K. P. Sharma} et al., ``On Fractional Kinetic Equations Involving Srivastava Polynomial'', Preprint, arXiv:2403.20048 [math-ph] (2024) Full Text: arXiv OA License
Jornet, Marc Theory on new fractional operators using normalization and probability tools. arXiv:2403.06198 Preprint, arXiv:2403.06198 [math.PR] (2024). MSC: 34A08 34A25 60E05 33E12 BibTeX Cite \textit{M. Jornet}, ``Theory on new fractional operators using normalization and probability tools'', Preprint, arXiv:2403.06198 [math.PR] (2024) Full Text: arXiv OA License
Jornet, Marc Theory on linear L-fractional differential equations and a new Mittag-Leffler-type function. arXiv:2403.00341 Preprint, arXiv:2403.00341 [math.CA] (2024). MSC: 34A08 34K06 33E12 34A25 60E05 BibTeX Cite \textit{M. Jornet}, ``Theory on linear L-fractional differential equations and a new Mittag-Leffler-type function'', Preprint, arXiv:2403.00341 [math.CA] (2024) Full Text: DOI arXiv OA License
Abdelhakim, Ahmed A. Mittag-Leffler functions in the Fourier space. arXiv:2402.05230 Preprint, arXiv:2402.05230 [math.CA] (2024). MSC: 30E15 33E12 42B10 30E20 34E05 BibTeX Cite \textit{A. A. Abdelhakim}, ``Mittag-Leffler functions in the Fourier space'', Preprint, arXiv:2402.05230 [math.CA] (2024) Full Text: arXiv OA License
Giusti, Andrea; Mentrelli, Andrea; Ruggeri, Tommaso Energy of a non-linear viscoelastic model compatible with fractional relaxation. arXiv:2402.04969 Preprint, arXiv:2402.04969 [math-ph] (2024). MSC: 35L60 74A20 74D10 33E12 BibTeX Cite \textit{A. Giusti} et al., ``Energy of a non-linear viscoelastic model compatible with fractional relaxation'', Preprint, arXiv:2402.04969 [math-ph] (2024) Full Text: arXiv OA License
Iuliano, Antonella; Macci, Claudio; Meoli, Alessandra Noncentral moderate deviations for time-changed Lévy processes with inverse of stable subordinators. arXiv:2401.01396 Preprint, arXiv:2401.01396 [math.PR] (2024). MSC: 60F10 60F05 60G22 33E12 BibTeX Cite \textit{A. Iuliano} et al., ``Noncentral moderate deviations for time-changed Lévy processes with inverse of stable subordinators'', Preprint, arXiv:2401.01396 [math.PR] (2024) Full Text: arXiv OA License
Suthar, D. L.; Amsalu, Hafte; Bohra, M.; Selvakumaran, K. A.; Purohit, S. D. Pathway fractional integral formulae involving extended Bessel-Maitland function in the Kernel. (English) Zbl 07907676 Singh, Jagdev (ed.) et al., Advances in mathematical modelling, applied analysis and computation. Proceedings of the fourth conference, ICMMAAC 2021, JECRC University, Jaipur, India, August 5–7, 2021. Singapore: Springer. Lect. Notes Netw. Syst. 415, 385-393 (2023). MSC: 33E12 05C38 26A33 PDFBibTeX XMLCite \textit{D. L. Suthar} et al., Lect. Notes Netw. Syst. 415, 385--393 (2023; Zbl 07907676) Full Text: DOI
Dwivedi, Ravi; Sanjhira, Reshma On the matrix function \(_{p}R_{q} (A, B; z)\) and its fractional calculus properties. (English) Zbl 07894521 Commun. Math. 31, No. 1, 43-56 (2023). MSC: 33E12 15A16 33C70 26A33 PDFBibTeX XMLCite \textit{R. Dwivedi} and \textit{R. Sanjhira}, Commun. Math. 31, No. 1, 43--56 (2023; Zbl 07894521) Full Text: DOI arXiv OA License
Gurjar, Meena Kumari; Rathour, Laxmi; Mishra, Lakshmi Narayan; Chhattry, Preeti Double Dirichlet average of generalized Bessel Maitland function using fractional derivative. (English) Zbl 07893227 J. Fract. Calc. Appl. 14, No. 2, Paper No. 14, 11 p. (2023). MSC: 26A33 33E12 42C05 PDFBibTeX XMLCite \textit{M. K. Gurjar} et al., J. Fract. Calc. Appl. 14, No. 2, Paper No. 14, 11 p. (2023; Zbl 07893227) Full Text: DOI
Bin-Saad, Maged G.; Al-Hashami, Abdulmalik; Younis, Jihad A. Some fractional calculus properties of bivariate Mittag-Leffler function. (English) Zbl 07890994 J. Fract. Calc. Appl. 14, No. 1, 214-227 (2023). MSC: 33E12 33C15 26A33 PDFBibTeX XMLCite \textit{M. G. Bin-Saad} et al., J. Fract. Calc. Appl. 14, No. 1, 214--227 (2023; Zbl 07890994) Full Text: DOI
Chauhan, Bharti; Rai, Prakriti; Pandey, Rupakshi Mishra; Mathur, Pankaj Some results of extended \(\tau\)-Gauss hypergeometric function and \(\tau\)-Kummer hypergeometric function by using Wiman’s function. (English) Zbl 07874152 Poincare J. Anal. Appl. 10, No. 2, 367-381 (2023). MSC: 33B15 33C15 33C20 33E12 PDFBibTeX XMLCite \textit{B. Chauhan} et al., Poincare J. Anal. Appl. 10, No. 2, 367--381 (2023; Zbl 07874152) Full Text: DOI
Thakkar, Yogesh M.; Shukla, Ajay K. Some formulas for the function \({R_3}\left[{\mu,\mu',\delta,\delta';\gamma;\upsilon ,\tau ,{z_1},{z_2}}\right]\). (English) Zbl 07859678 Adv. Stud.: Euro-Tbil. Math. J. 16, No. 3, 53-66 (2023). MSC: 33C65 33E12 33B15 PDFBibTeX XMLCite \textit{Y. M. Thakkar} and \textit{A. K. Shukla}, Adv. Stud.: Euro-Tbil. Math. J. 16, No. 3, 53--66 (2023; Zbl 07859678) Full Text: DOI Link
Altinkaya, Şahsene; Çetinkaya, Asena Some properties for spirallike functions involving generalized \(q\)-integral operator. (English) Zbl 07859405 Honam Math. J. 45, No. 4, 689-700 (2023). MSC: 30C45 33E12 PDFBibTeX XMLCite \textit{Ş. Altinkaya} and \textit{A. Çetinkaya}, Honam Math. J. 45, No. 4, 689--700 (2023; Zbl 07859405) Full Text: DOI
Akgul, Ali; Ülgül, Enver; Alqahtani, Rubayyi T. Chemostat model analysis with different kernels and fractional derivatives. (English) Zbl 07850768 J. Math. Ext. 17, No. 9, Paper No. 3, 28 p. (2023). MSC: 92C75 26A33 28A80 45J05 33E12 PDFBibTeX XMLCite \textit{A. Akgul} et al., J. Math. Ext. 17, No. 9, Paper No. 3, 28 p. (2023; Zbl 07850768) Full Text: DOI
Neto, Antônio Francisco A new approach to multi-delay matrix valued fractional linear differential equations with constant coefficients. (English) Zbl 1537.34084 Fract. Calc. Appl. Anal. 26, No. 5, 2202-2236 (2023). MSC: 34K37 26A33 15A16 33E12 PDFBibTeX XMLCite \textit{A. F. Neto}, Fract. Calc. Appl. Anal. 26, No. 5, 2202--2236 (2023; Zbl 1537.34084) Full Text: DOI
Van Bockstal, Karel; Zaky, Mahmoud A.; Hendy, Ahmed On the Rothe-Galerkin spectral discretization for a class of variable fractional-order nonlinear wave equations. (English) Zbl 1537.35397 Fract. Calc. Appl. Anal. 26, No. 5, 2175-2201 (2023). MSC: 35R11 33E12 65M60 PDFBibTeX XMLCite \textit{K. Van Bockstal} et al., Fract. Calc. Appl. Anal. 26, No. 5, 2175--2201 (2023; Zbl 1537.35397) Full Text: DOI arXiv
Droghei, Riccardo Properties of the multi-index special function \({\mathcal{W}}^{\left(\bar{\alpha},\bar{\nu}\right)}(z)\). (English) Zbl 1539.33018 Fract. Calc. Appl. Anal. 26, No. 5, 2057-2068 (2023). MSC: 33E12 26A33 33C47 33C60 PDFBibTeX XMLCite \textit{R. Droghei}, Fract. Calc. Appl. Anal. 26, No. 5, 2057--2068 (2023; Zbl 1539.33018) Full Text: DOI arXiv
Akram, Muhammad; Muhammad, Ghulam; Allahviranloo, Tofigh Explicit analytical solutions of an incommensurate system of fractional differential equations in a fuzzy environment. (English) Zbl 07841249 Inf. Sci. 645, Article ID 119372, 27 p. (2023). MSC: 34A05 34A07 34A08 34A30 34A05 33E12 47H10 45D05 PDFBibTeX XMLCite \textit{M. Akram} et al., Inf. Sci. 645, Article ID 119372, 27 p. (2023; Zbl 07841249) Full Text: DOI
Lee, Jeonghwa; Macci, Claudio Noncentral moderate deviations for fractional Skellam processes. (English) Zbl 1537.60032 Mod. Stoch., Theory Appl. 11, No. 1, 43-61 (2023). MSC: 60F10 60F05 60G22 33E12 PDFBibTeX XMLCite \textit{J. Lee} and \textit{C. Macci}, Mod. Stoch., Theory Appl. 11, No. 1, 43--61 (2023; Zbl 1537.60032) Full Text: DOI arXiv
Nguyen Thi Thu Huong; Nguyen Nhu Thang; Tran Dinh Ke An improved fractional Halanay inequality with distributed delays. (English) Zbl 1536.35018 Math. Methods Appl. Sci. 46, No. 18, 19083-19099 (2023). MSC: 35A23 26A33 35R11 35B40 45K05 45M05 33E12 PDFBibTeX XMLCite \textit{Nguyen Thi Thu Huong} et al., Math. Methods Appl. Sci. 46, No. 18, 19083--19099 (2023; Zbl 1536.35018) Full Text: DOI
Shahwan, Mohannad J. S.; Bin-Saad, Maged G.; Al-Hashami, Abdulmalik Some properties of bivariate Mittag-Leffler function. (English) Zbl 1534.33022 J. Anal. 31, No. 3, 2063-2083 (2023). Reviewer: Sergei V. Rogosin (Minsk) MSC: 33E12 44A20 47G20 26A33 PDFBibTeX XMLCite \textit{M. J. S. Shahwan} et al., J. Anal. 31, No. 3, 2063--2083 (2023; Zbl 1534.33022) Full Text: DOI
Oubalhaj, Youness; Karim, Belhadj; Zerouali, Abdellah Existence and non-existence of solutions for a \((p,q)\)-Laplacian Steklov system. (English) Zbl 07805590 Bol. Soc. Parana. Mat. (3) 41, Paper No. 31, 7 p. (2023). MSC: 33E12 30C45 PDFBibTeX XMLCite \textit{Y. Oubalhaj} et al., Bol. Soc. Parana. Mat. (3) 41, Paper No. 31, 7 p. (2023; Zbl 07805590) Full Text: DOI OA License
Soni, Amit; Soni, Manoj Kumar; Bansal, Deepak Certain geometric properties of the generalized Dini function \(R^{a,k}_{\nu}(z)\). (English) Zbl 07805589 Bol. Soc. Parana. Mat. (3) 41, Paper No. 30, 8 p. (2023). MSC: 33E12 30C45 PDFBibTeX XMLCite \textit{A. Soni} et al., Bol. Soc. Parana. Mat. (3) 41, Paper No. 30, 8 p. (2023; Zbl 07805589) Full Text: DOI OA License
Zhou, Ping; Jafari, Hossein; Ganji, Roghayeh M.; Narsale, Sonali M. Numerical study for a class of time fractional diffusion equations using operational matrices based on Hosoya polynomial. (English) Zbl 1532.65097 Electron. Res. Arch. 31, No. 8, 4530-4548 (2023). MSC: 65M99 65M12 65M15 65H10 35R11 05C12 05C31 33E12 35Q53 PDFBibTeX XMLCite \textit{P. Zhou} et al., Electron. Res. Arch. 31, No. 8, 4530--4548 (2023; Zbl 1532.65097) Full Text: DOI OA License
Ye, Yinlin; Fan, Hongtao; Li, Yajing; Huang, Ao; He, Weiheng An artificial neural network approach for a class of time-fractional diffusion and diffusion-wave equations. (English) Zbl 1532.65096 Netw. Heterog. Media 18, No. 3, 1083-1104 (2023). MSC: 65M99 68T07 92B20 65M15 41A58 33E12 26A33 35R11 PDFBibTeX XMLCite \textit{Y. Ye} et al., Netw. Heterog. Media 18, No. 3, 1083--1104 (2023; Zbl 1532.65096) Full Text: DOI
Balachandran, K. Controllability of generalized fractional dynamical systems. (English) Zbl 1533.93060 Nonlinear Funct. Anal. Appl. 28, No. 4, 1115-1125 (2023). MSC: 93B05 93C15 34A08 33E12 PDFBibTeX XMLCite \textit{K. Balachandran}, Nonlinear Funct. Anal. Appl. 28, No. 4, 1115--1125 (2023; Zbl 1533.93060) Full Text: Link
Pal, Ankit; Kumar Jatav, Vinod; Shukla, Ajay Kumar Matrix analog of the four-parameter Mittag-Leffler function. (English) Zbl 1531.33039 Math. Methods Appl. Sci. 46, No. 14, 15094-15106 (2023). MSC: 33E12 33B15 33C20 15A16 26A33 PDFBibTeX XMLCite \textit{A. Pal} et al., Math. Methods Appl. Sci. 46, No. 14, 15094--15106 (2023; Zbl 1531.33039) Full Text: DOI
Sacha, Dheerandra Shanker; Singh, Giriraj Certain integrals of product of Mittag-Leffler function, \(M\)-series and \(I\)-function of two variables. (English) Zbl 1538.33020 Jñānābha 53, No. 2, 177-190 (2023). MSC: 33C60 33B15 33E12 44A20 PDFBibTeX XMLCite \textit{D. S. Sacha} and \textit{G. Singh}, Jñānābha 53, No. 2, 177--190 (2023; Zbl 1538.33020) Full Text: DOI
Bairwa, R. K.; Singh, Karan An analytical study of space-time fractional order gas dynamic equations. (English) Zbl 07790462 Jñānābha 53, No. 2, 15-23 (2023). MSC: 76N15 33E12 26A33 35A22 76N10 35R11 PDFBibTeX XMLCite \textit{R. K. Bairwa} and \textit{K. Singh}, Jñānābha 53, No. 2, 15--23 (2023; Zbl 07790462) Full Text: DOI
Umamaheswari, P.; Balachandran, K.; Annapoorani, N.; Kim, Daewook Existence and stability results for stochastic fractional neutral differential equations with Gaussian noise and Lévy noise. (English) Zbl 1538.34036 Nonlinear Funct. Anal. Appl. 28, No. 2, 365-382 (2023). MSC: 34A08 60H10 34A12 33E12 34A09 34F05 60G15 60G65 34D20 PDFBibTeX XMLCite \textit{P. Umamaheswari} et al., Nonlinear Funct. Anal. Appl. 28, No. 2, 365--382 (2023; Zbl 1538.34036) Full Text: Link
Huang, Jizhao; Luo, Danfeng Relatively exact controllability of fractional stochastic delay system driven by Lévy noise. (English) Zbl 1538.34300 Math. Methods Appl. Sci. 46, No. 9, 11188-11211 (2023). MSC: 34K35 93B05 34K50 60J65 34K37 47H10 33E12 PDFBibTeX XMLCite \textit{J. Huang} and \textit{D. Luo}, Math. Methods Appl. Sci. 46, No. 9, 11188--11211 (2023; Zbl 1538.34300) Full Text: DOI
Pan, Renjie; Fan, Zhenbin Analyses of solutions of Riemann-Liouville fractional oscillatory differential equations with pure delay. (English) Zbl 1536.34075 Math. Methods Appl. Sci. 46, No. 9, 10450-10464 (2023). Reviewer: Jin Liang (Shanghai) MSC: 34K37 34K06 33E12 34K20 PDFBibTeX XMLCite \textit{R. Pan} and \textit{Z. Fan}, Math. Methods Appl. Sci. 46, No. 9, 10450--10464 (2023; Zbl 1536.34075) Full Text: DOI
Missaoui, Sonia; Rguigui, Hafedh The fractional evolution equations associated with the quantum fractional number operator. (English) Zbl 1530.34007 Math. Methods Appl. Sci. 46, No. 9, 10151-10166 (2023). MSC: 34A08 34A12 33E12 44A10 34A05 PDFBibTeX XMLCite \textit{S. Missaoui} and \textit{H. Rguigui}, Math. Methods Appl. Sci. 46, No. 9, 10151--10166 (2023; Zbl 1530.34007) Full Text: DOI
Menon, Mudita; Mittal, Ekta; Gupta, Rajni Extended hyperbolic function and its properties. (English) Zbl 1538.33002 Southeast Asian Bull. Math. 47, No. 6, 791-804 (2023). MSC: 33B10 33B20 33C05 33E12 45P05 26A33 PDFBibTeX XMLCite \textit{M. Menon} et al., Southeast Asian Bull. Math. 47, No. 6, 791--804 (2023; Zbl 1538.33002) Full Text: Link
Antonio Taneco-Hernández, Marco; Gómez-Aguilar, José Francisco; Cuahutenango-Barro, Bricio Wave process in viscoelastic media using fractional derivatives with nonsingular kernels. (English) Zbl 1539.74527 Math. Methods Appl. Sci. 46, No. 4, 4413-4436 (2023). MSC: 74S40 26A33 33E12 PDFBibTeX XMLCite \textit{M. Antonio Taneco-Hernández} et al., Math. Methods Appl. Sci. 46, No. 4, 4413--4436 (2023; Zbl 1539.74527) Full Text: DOI
Liu, Li; Dong, Qixiang; Li, Gang Exact solutions and finite time stability for higher fractional-order differential equations with pure delay. (English) Zbl 1538.34309 Math. Methods Appl. Sci. 46, No. 2, 2334-2353 (2023). MSC: 34K37 33E12 44A10 93D40 PDFBibTeX XMLCite \textit{L. Liu} et al., Math. Methods Appl. Sci. 46, No. 2, 2334--2353 (2023; Zbl 1538.34309) Full Text: DOI
Yilmazer, Mehmet Çağri; Yilmaz, Emrah; Gulsen, Tuba; Et, Mikhail Laplace transform for Mittag-Leffler function in cryptography. (English) Zbl 1532.94063 Gulf J. Math. 15, No. 2, 81-95 (2023). MSC: 94A60 68P25 33E12 44A10 94A15 PDFBibTeX XMLCite \textit{M. Ç. Yilmazer} et al., Gulf J. Math. 15, No. 2, 81--95 (2023; Zbl 1532.94063) Full Text: DOI