Ikeda, Masahiro; Taniguchi, Koichi; Wakasugi, Yuta Global existence and asymptotic behavior for semilinear damped wave equations on measure spaces. (English) Zbl 07903730 Evol. Equ. Control Theory 13, No. 4, 1101-1125 (2024). MSC: 35L15 35L70 35L90 35A01 35B40 PDFBibTeX XMLCite \textit{M. Ikeda} et al., Evol. Equ. Control Theory 13, No. 4, 1101--1125 (2024; Zbl 07903730) Full Text: DOI arXiv
Nishitani, Tatsuo A more direct way to the Cauchy problem for effectively hyperbolic operators. (English) Zbl 07901413 J. Pseudo-Differ. Oper. Appl. 15, No. 2, Paper No. 20, 55 p. (2024). MSC: 35L15 35L80 35S05 35S10 PDFBibTeX XMLCite \textit{T. Nishitani}, J. Pseudo-Differ. Oper. Appl. 15, No. 2, Paper No. 20, 55 p. (2024; Zbl 07901413) Full Text: DOI OA License
Sitnik, Sergey; Alzamili, Khitam; Qudosi, Abdul; Shishkina, Elina Vekua-Erdélyi-Lowndes type transmutation and applications. (English) Zbl 07895079 J. Math. Sci., New York 281, No. 6, 938-945 (2024). MSC: 35L15 35A22 44A15 PDFBibTeX XMLCite \textit{S. Sitnik} et al., J. Math. Sci., New York 281, No. 6, 938--945 (2024; Zbl 07895079) Full Text: DOI
Wang, Sheng; Zhou, Yi Physical space approach to wave equation bilinear estimates revisit. (English) Zbl 07889780 Ann. PDE 10, No. 2, Paper No. 11, 14 p. (2024). MSC: 35B35 35L15 PDFBibTeX XMLCite \textit{S. Wang} and \textit{Y. Zhou}, Ann. PDE 10, No. 2, Paper No. 11, 14 p. (2024; Zbl 07889780) Full Text: DOI arXiv
Huh, Hyungjin Complete solvability of the time dependent self-dual equations of Chern-Simons-Higgs model. (English) Zbl 07889271 Rep. Math. Phys. 93, No. 3, 353-360 (2024). MSC: 35L15 35L45 35Q40 35F25 PDFBibTeX XMLCite \textit{H. Huh}, Rep. Math. Phys. 93, No. 3, 353--360 (2024; Zbl 07889271) Full Text: DOI
Huang, Jingyu; Oh, Tadahiro; Okamoto, Mamoru On the local linearization of the one-dimensional stochastic wave equation with a multiplicative space-time white noise forcing. (English) Zbl 07881505 Proc. Am. Math. Soc., Ser. B 11, 378-389 (2024). MSC: 35R60 35L15 35L71 60H15 PDFBibTeX XMLCite \textit{J. Huang} et al., Proc. Am. Math. Soc., Ser. B 11, 378--389 (2024; Zbl 07881505) Full Text: DOI arXiv
Collot, Charles; Duyckaerts, Thomas; Kenig, Carlos; Merle, Frank Soliton resolution for the radial quadratic wave equation in space dimension 6. (English) Zbl 07879435 Vietnam J. Math. 52, No. 3, 735-773 (2024). MSC: 35L71 35B40 35B44 35L15 PDFBibTeX XMLCite \textit{C. Collot} et al., Vietnam J. Math. 52, No. 3, 735--773 (2024; Zbl 07879435) Full Text: DOI arXiv
Dasgupta, Aparajita; Kumar, Vishvesh; Mondal, Shyam Swarup; Ruzhansky, Michael Semilinear damped wave equations on the Heisenberg group with initial data from Sobolev spaces of negative order. (English) Zbl 07879418 J. Evol. Equ. 24, No. 3, Paper No. 51, 35 p. (2024). MSC: 35R03 35L15 35L71 35A01 35B33 35B44 43A80 PDFBibTeX XMLCite \textit{A. Dasgupta} et al., J. Evol. Equ. 24, No. 3, Paper No. 51, 35 p. (2024; Zbl 07879418) Full Text: DOI arXiv OA License
Katayama, Soichiro; Wakasa, Kyouhei; Yordanov, Borislav Decay property for nonlinear damped wave equations in one space dimension. (English) Zbl 07873555 J. Differ. Equations 404, 279-296 (2024). MSC: 35B40 35L15 35L71 PDFBibTeX XMLCite \textit{S. Katayama} et al., J. Differ. Equations 404, 279--296 (2024; Zbl 07873555) Full Text: DOI
Yu, Lu; Huicheng, Yin On the critical exponent \(p_c\) of the 3D quasilinear wave equation \(-(1+(\partial_t\phi)^p)\partial_t^2\phi + \delta\phi = 0\) with short pulse initial data. II: Shock formation. (English) Zbl 07872136 Calc. Var. Partial Differ. Equ. 63, No. 6, Paper No. 143, 53 p. (2024). MSC: 35B44 35L67 35L15 35L72 PDFBibTeX XMLCite \textit{L. Yu} and \textit{Y. Huicheng}, Calc. Var. Partial Differ. Equ. 63, No. 6, Paper No. 143, 53 p. (2024; Zbl 07872136) Full Text: DOI
Boudeliou, Marwa; Djebabla, Abdelhak; Apalara, Tijani A. Well posedness and stability result of Lord-Shulman system with microtemperature effects: the case \(\xi \mu^\ast = \mu_0^2\). (English) Zbl 07869464 Math. Methods Appl. Sci. 47, No. 10, 8171-8186 (2024). MSC: 35B35 35B40 35L15 35Q74 74F05 93D05 93D23 PDFBibTeX XMLCite \textit{M. Boudeliou} et al., Math. Methods Appl. Sci. 47, No. 10, 8171--8186 (2024; Zbl 07869464) Full Text: DOI
Kido, Ryuki; Sasaki, Takiko; Takamatsu, Shu; Takamura, Hiroyuki The generalized combined effect for one dimensional wave equations with semilinear terms including product type. (English) Zbl 07869064 J. Differ. Equations 403, 576-618 (2024). MSC: 35L71 35B44 35L15 PDFBibTeX XMLCite \textit{R. Kido} et al., J. Differ. Equations 403, 576--618 (2024; Zbl 07869064) Full Text: DOI arXiv
Kim, Seongyeon; Moon, Sunghwan; Seo, Ihyeok Reconstruction of the initial data from the trace of the solutions on an infinite time cylinder of damped wave equations. (English) Zbl 07867338 Inverse Probl. 40, No. 6, Article ID 065009, 12 p. (2024). MSC: 35R30 35L15 PDFBibTeX XMLCite \textit{S. Kim} et al., Inverse Probl. 40, No. 6, Article ID 065009, 12 p. (2024; Zbl 07867338) Full Text: DOI arXiv
Goncharsky, Alexander V.; Romanov, Sergey Y.; Seryozhnikov, Sergey Y. On mathematical problems of two-coefficient inverse problems of ultrasonic tomography. (English) Zbl 07867306 Inverse Probl. 40, No. 4, Article ID 045026, 20 p. (2024). MSC: 35R30 35L15 65M32 PDFBibTeX XMLCite \textit{A. V. Goncharsky} et al., Inverse Probl. 40, No. 4, Article ID 045026, 20 p. (2024; Zbl 07867306) Full Text: DOI
Bhardwaj, Arun Kumar; Kumar, Vishvesh; Mondal, Shyam Swarup Estimates for the nonlinear viscoelastic damped wave equation on compact Lie groups. (English) Zbl 07850894 Proc. R. Soc. Edinb., Sect. A, Math. 154, No. 3, 810-829 (2024). MSC: 35R03 35L15 35L71 PDFBibTeX XMLCite \textit{A. K. Bhardwaj} et al., Proc. R. Soc. Edinb., Sect. A, Math. 154, No. 3, 810--829 (2024; Zbl 07850894) Full Text: DOI arXiv
Wang, Chengbo; Zhang, Xiaoran An alternative proof of Tataru’s dispersive estimates. (English) Zbl 1539.35019 Forum Math. 36, No. 3, 743-764 (2024). MSC: 35B45 33C10 35L15 35L71 35R01 46F10 58J45 PDFBibTeX XMLCite \textit{C. Wang} and \textit{X. Zhang}, Forum Math. 36, No. 3, 743--764 (2024; Zbl 1539.35019) Full Text: DOI arXiv
Wang, Baoxiang Global Cauchy problem for the complex NLKG and sinh-Gordon equations in super-critical spaces. (English) Zbl 07845274 J. Funct. Anal. 287, No. 2, Article ID 110458, 65 p. (2024). Reviewer: Michał Kowalczyk (Santiago de Chile) MSC: 35L71 35L15 42B35 42B37 PDFBibTeX XMLCite \textit{B. Wang}, J. Funct. Anal. 287, No. 2, Article ID 110458, 65 p. (2024; Zbl 07845274) Full Text: DOI arXiv
Urazboev, G. U.; Baltaeva, I. I.; Baimankulov, A. T. Integration of the loaded sine-Gordon equation by the inverse scattering problem method. (English) Zbl 1539.35148 Azerb. J. Math. 14, No. 1, 44-55 (2024). MSC: 35L71 35L15 35A25 35A24 35P25 PDFBibTeX XMLCite \textit{G. U. Urazboev} et al., Azerb. J. Math. 14, No. 1, 44--55 (2024; Zbl 1539.35148) Full Text: Link
Brun, Enguerrand; Li, Guopeng; Liu, Ruoyuan Global well-posedness of the energy-critical stochastic nonlinear wave equations. (English) Zbl 1537.35243 J. Differ. Equations 397, 316-348 (2024). MSC: 35L71 35L15 35R60 60H15 PDFBibTeX XMLCite \textit{E. Brun} et al., J. Differ. Equations 397, 316--348 (2024; Zbl 1537.35243) Full Text: DOI arXiv
Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Gonzalez Martinez, Victor H.; Marchiori, Talita Druziani; Vicente, A. Stabilization of hyperbolic problems with localized damping in unbounded domains. (English) Zbl 1537.35061 J. Math. Anal. Appl. 537, No. 1, Article ID 128256, 20 p. (2024). MSC: 35B40 35L71 35L15 35L20 PDFBibTeX XMLCite \textit{M. M. Cavalcanti} et al., J. Math. Anal. Appl. 537, No. 1, Article ID 128256, 20 p. (2024; Zbl 1537.35061) Full Text: DOI
Ruan, Zhuoping; Witt, Ingo A scheme for solving hyperbolic problems with symbolic structure. (English) Zbl 07830523 Differ. Integral Equ. 37, No. 3-4, 165-186 (2024). MSC: 35L30 35L15 35L90 PDFBibTeX XMLCite \textit{Z. Ruan} and \textit{I. Witt}, Differ. Integral Equ. 37, No. 3--4, 165--186 (2024; Zbl 07830523) Full Text: DOI arXiv
Charão, Ruy Coimbra; Ikehata, Ryo Wave equations with a damping term degenerating near low and high frequency regions. (English) Zbl 1536.35057 J. Pseudo-Differ. Oper. Appl. 15, No. 2, Paper No. 19, 24 p. (2024). MSC: 35B40 35L15 35C20 35R11 35S05 PDFBibTeX XMLCite \textit{R. C. Charão} and \textit{R. Ikehata}, J. Pseudo-Differ. Oper. Appl. 15, No. 2, Paper No. 19, 24 p. (2024; Zbl 1536.35057) Full Text: DOI
Feng, Zhendong; Guo, Fei; Li, Yuequn Blowup for a damped wave equation with mass and general nonlinear memory. (English) Zbl 1536.35100 Bull. Malays. Math. Sci. Soc. (2) 47, No. 3, Paper No. 77, 24 p. (2024). MSC: 35B44 35L15 35L71 35R09 PDFBibTeX XMLCite \textit{Z. Feng} et al., Bull. Malays. Math. Sci. Soc. (2) 47, No. 3, Paper No. 77, 24 p. (2024; Zbl 1536.35100) Full Text: DOI
Duerinckx, Mitia; Gloria, Antoine; Ruf, Matthias A spectral ansatz for the long-time homogenization of the wave equation. (Un ansatz spectral pour l’homogénéisation de l’équation des ondes en temps long.) (English. French summary) Zbl 1536.35032 J. Éc. Polytech., Math. 11, 523-587 (2024). MSC: 35B27 35B40 35C20 35L05 35L15 74Q10 74Q15 74H40 35P05 PDFBibTeX XMLCite \textit{M. Duerinckx} et al., J. Éc. Polytech., Math. 11, 523--587 (2024; Zbl 1536.35032) Full Text: DOI arXiv OA License
Duyckaerts, Thomas; Negro, Giuseppe Global solutions with asymptotic self-similar behaviour for the cubic wave equation. (English) Zbl 07824912 Commun. Math. Phys. 405, No. 3, Paper No. 84, 43 p. (2024). Reviewer: Chengbo Wang (Hangzhou) MSC: 35B40 35C06 35L15 35L71 PDFBibTeX XMLCite \textit{T. Duyckaerts} and \textit{G. Negro}, Commun. Math. Phys. 405, No. 3, Paper No. 84, 43 p. (2024; Zbl 07824912) Full Text: DOI arXiv
Li, Yuequn; Liu, Hui; Guo, Fei Global existence and asymptotic profile for a damped wave equation with variable-coefficient diffusion. (English) Zbl 1536.35103 Electron. J. Differ. Equ. 2024, Paper No. 4, 31 p. (2024). MSC: 35B44 35L15 35L71 PDFBibTeX XMLCite \textit{Y. Li} et al., Electron. J. Differ. Equ. 2024, Paper No. 4, 31 p. (2024; Zbl 1536.35103) Full Text: Link
Agashe, Aditya; Lee, Ethan; Tahvildar-Zadeh, Shadi On the joint evolution problem for a scalar field and its singularity. (English) Zbl 1536.35013 Involve 17, No. 1, 163-182 (2024). MSC: 35A21 35L15 70S10 78A35 PDFBibTeX XMLCite \textit{A. Agashe} et al., Involve 17, No. 1, 163--182 (2024; Zbl 1536.35013) Full Text: DOI arXiv
Facci, Michael; McEntarrfer, Alex; Metcalfe, Jason An \(r^p\)-weighted local energy approach to global existence for null form semilinear wave equations. (English) Zbl 1536.35199 Involve 17, No. 1, 1-9 (2024). MSC: 35L15 35L71 PDFBibTeX XMLCite \textit{M. Facci} et al., Involve 17, No. 1, 1--9 (2024; Zbl 1536.35199) Full Text: DOI
Li, Liang; Shen, Ruipeng; Wei, Lijuan Explicit formula of radiation fields of free waves with applications on channel of energy. (English) Zbl 1536.35198 Anal. PDE 17, No. 2, 723-748 (2024). MSC: 35L05 35L15 35B40 PDFBibTeX XMLCite \textit{L. Li} et al., Anal. PDE 17, No. 2, 723--748 (2024; Zbl 1536.35198) Full Text: DOI arXiv OA License
Csobo, Elek; Glogić, Irfan; Schörkhuber, Birgit On blowup for the supercritical quadratic wave equation. (English) Zbl 1536.35098 Anal. PDE 17, No. 2, 617-680 (2024). MSC: 35B44 35L15 35L71 PDFBibTeX XMLCite \textit{E. Csobo} et al., Anal. PDE 17, No. 2, 617--680 (2024; Zbl 1536.35098) Full Text: DOI arXiv OA License
Senapati, Soumen; Sini, Mourad; Wang, Haibing Recovering both the wave speed and the source function in a time-domain wave equation by injecting contrasting droplets. (English) Zbl 1534.35450 Discrete Contin. Dyn. Syst. 44, No. 5, 1446-1474 (2024). MSC: 35R30 35L05 35L15 45Q05 65N21 PDFBibTeX XMLCite \textit{S. Senapati} et al., Discrete Contin. Dyn. Syst. 44, No. 5, 1446--1474 (2024; Zbl 1534.35450) Full Text: DOI arXiv
D’Abbicco, Marcello; Girardi, Giovanni Second order \(p\)-evolution equations with critical nonlinearity. (English) Zbl 1534.35262 “Bruno Pini” Mathematical Analysis Seminar 2023. Papers from the seminar, University of Bologna, Bologna, Italy, 2023. Bologna: Università di Bologna, Alma Mater Studiorum. 263-280 (2024). MSC: 35L15 35L71 35L90 35B33 PDFBibTeX XMLCite \textit{M. D'Abbicco} and \textit{G. Girardi}, in: ``Bruno Pini'' Mathematical Analysis Seminar 2023. Papers from the seminar, University of Bologna, Bologna, Italy, 2023. Bologna: Università di Bologna, Alma Mater Studiorum. 263--280 (2024; Zbl 1534.35262) Full Text: DOI
Fujiwara, Kazumasa; Georgiev, Vladimir Lifespan estimates for 1d damped wave equation with zero moment initial data. (English) Zbl 1534.35041 J. Math. Anal. Appl. 535, No. 1, Article ID 128107, 13 p. (2024). MSC: 35B44 35L15 35L71 PDFBibTeX XMLCite \textit{K. Fujiwara} and \textit{V. Georgiev}, J. Math. Anal. Appl. 535, No. 1, Article ID 128107, 13 p. (2024; Zbl 1534.35041) Full Text: DOI arXiv
Bringmann, Bjoern; Lührmann, Jonas; Staffilani, Gigliola The wave maps equation and Brownian paths. (English) Zbl 1534.35261 Commun. Math. Phys. 405, No. 3, Paper No. 60, 115 p. (2024). MSC: 35L15 35A15 35R01 58J45 PDFBibTeX XMLCite \textit{B. Bringmann} et al., Commun. Math. Phys. 405, No. 3, Paper No. 60, 115 p. (2024; Zbl 1534.35261) Full Text: DOI arXiv
Côte, Raphaël; Laurent, Camille Concentration close to the cone for linear waves. (English) Zbl 1534.35259 Rev. Mat. Iberoam. 40, No. 1, 201-250 (2024). MSC: 35L05 35L15 35B40 PDFBibTeX XMLCite \textit{R. Côte} and \textit{C. Laurent}, Rev. Mat. Iberoam. 40, No. 1, 201--250 (2024; Zbl 1534.35259) Full Text: DOI arXiv
Ebert, Marcelo Rempel; Marques, Jorge; do Nascimento, Wanderley Nunes The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping. (English) Zbl 1533.35044 NoDEA, Nonlinear Differ. Equ. Appl. 31, No. 2, Paper No. 23, 33 p. (2024). MSC: 35B45 35B33 35L15 35L71 35R11 PDFBibTeX XMLCite \textit{M. R. Ebert} et al., NoDEA, Nonlinear Differ. Equ. Appl. 31, No. 2, Paper No. 23, 33 p. (2024; Zbl 1533.35044) Full Text: DOI
Khater, Mostafa M. A.; Hamed, Y. S.; Lu, Dianchen On rigorous computational and numerical solutions for the voltages of the electrified transmission range with the day yet distance. (English) Zbl 1531.65284 Numer. Methods Partial Differ. Equations 40, No. 1, Article ID e22700, 19 p. (2024). MSC: 65R20 45E10 35L15 35R11 65M06 PDFBibTeX XMLCite \textit{M. M. A. Khater} et al., Numer. Methods Partial Differ. Equations 40, No. 1, Article ID e22700, 19 p. (2024; Zbl 1531.65284) Full Text: DOI
Morgan, Katrina The effect of metric behavior at spatial infinity on pointwise wave decay in the asymptotically flat stationary setting. (English) Zbl 1531.35072 Am. J. Math. 146, No. 1, 47-105 (2024). MSC: 35B40 35L15 PDFBibTeX XMLCite \textit{K. Morgan}, Am. J. Math. 146, No. 1, 47--105 (2024; Zbl 1531.35072) Full Text: DOI arXiv
Dodson, Benjamin Global well-posedness for the radial, defocusing, nonlinear wave equation for \(3 < p < 5\). (English) Zbl 1533.35211 Am. J. Math. 146, No. 1, 1-46 (2024). Reviewer: Chengbo Wang (Hangzhou) MSC: 35L71 35L15 35L05 35B40 PDFBibTeX XMLCite \textit{B. Dodson}, Am. J. Math. 146, No. 1, 1--46 (2024; Zbl 1533.35211) Full Text: DOI arXiv
Forlano, Justin; Tolomeo, Leonardo On the unique ergodicity for a class of 2 dimensional stochastic wave equations. (English) Zbl 1530.35376 Trans. Am. Math. Soc. 377, No. 1, 345-394 (2024). MSC: 35R60 35L15 35L71 37A25 60H15 PDFBibTeX XMLCite \textit{J. Forlano} and \textit{L. Tolomeo}, Trans. Am. Math. Soc. 377, No. 1, 345--394 (2024; Zbl 1530.35376) Full Text: DOI arXiv
Tao, Fei Global classical solutions of semilinear wave equations on \(\mathbb{R}^3\times\mathbb{T}\) with cubic nonlinearities. (English) Zbl 1538.35227 Acta Math. Sci., Ser. B, Engl. Ed. 44, No. 1, 115-128 (2024). MSC: 35L71 35L15 PDFBibTeX XMLCite \textit{F. Tao}, Acta Math. Sci., Ser. B, Engl. Ed. 44, No. 1, 115--128 (2024; Zbl 1538.35227) Full Text: DOI
Jiang, Qinfeng; Wei, Changhua; Xing, Tiantian The global classical solution and asymptotic behavior of the Cauchy problem for hyperbolic Monge-Ampère equation. (English) Zbl 1530.35138 Result. Math. 79, No. 1, Paper No. 12, 19 p. (2024). MSC: 35L15 35L72 35B40 PDFBibTeX XMLCite \textit{Q. Jiang} et al., Result. Math. 79, No. 1, Paper No. 12, 19 p. (2024; Zbl 1530.35138) Full Text: DOI
Hou, Fei; Tao, Fei; Yin, Huicheng The partial null conditions and global smooth solutions of the nonlinear wave equations on \(\mathbb{R}^d \times \mathbb{T}\) with \(d = 2, 3\). (English) Zbl 1533.35209 J. Differ. Equations 378, 823-870 (2024). Reviewer: Chengbo Wang (Hangzhou) MSC: 35L70 35L15 35L05 35B30 35B44 PDFBibTeX XMLCite \textit{F. Hou} et al., J. Differ. Equations 378, 823--870 (2024; Zbl 1533.35209) Full Text: DOI arXiv
Ait el bhira, H.; Kzaz, M.; Maach, F.; Zerouaoui, J. Solving second-order telegraph equations with high-frequency extrinsic oscillations. (English) Zbl 1527.35134 Appl. Numer. Math. 195, 89-104 (2024). Reviewer: Abdallah Bradji (Annaba) MSC: 35C10 35L10 35L15 PDFBibTeX XMLCite \textit{H. Ait el bhira} et al., Appl. Numer. Math. 195, 89--104 (2024; Zbl 1527.35134) Full Text: DOI
Piske, Alessandra; Charão, Ruy Coimbra; Ikehata, Ryo Strongly damped wave equations with mass-like terms of the logarithmic-Laplacian. (English) Zbl 1526.35072 J. Math. Anal. Appl. 530, No. 2, Article ID 127724, 32 p. (2024). MSC: 35B40 35L15 35R09 PDFBibTeX XMLCite \textit{A. Piske} et al., J. Math. Anal. Appl. 530, No. 2, Article ID 127724, 32 p. (2024; Zbl 1526.35072) Full Text: DOI arXiv
D’Abbicco, Marcello Semilinear damped wave equations with data from Sobolev spaces of negative order: the critical case in Euclidean setting and in the Heisenberg space. arXiv:2408.11756 Preprint, arXiv:2408.11756 [math.AP] (2024). MSC: 35L71 35L15 35B33 35A01 BibTeX Cite \textit{M. D'Abbicco}, ``Semilinear damped wave equations with data from Sobolev spaces of negative order: the critical case in Euclidean setting and in the Heisenberg space'', Preprint, arXiv:2408.11756 [math.AP] (2024) Full Text: arXiv OA License
Kumar, Vishvesh; Mondal, Shyam Swarup; Ruzhansky, Michael; Torebek, Berikbol T. Blow-up result for semilinear damped wave equations with data from negative order Sobolev spaces: the critical case. arXiv:2408.05598 Preprint, arXiv:2408.05598 [math.AP] (2024). MSC: 43A80 35L15 35L71 35A01 35L15 35B33 35B44 BibTeX Cite \textit{V. Kumar} et al., ``Blow-up result for semilinear damped wave equations with data from negative order Sobolev spaces: the critical case'', Preprint, arXiv:2408.05598 [math.AP] (2024) Full Text: arXiv OA License
Said, Khaldi; Zahra, Arioui Fatima Global existence for wave and beam equations with double damping and a new power nonlinearity. arXiv:2405.17274 Preprint, arXiv:2405.17274 [math.AP] (2024). MSC: 35A01 35L05 35L15 35L71 BibTeX Cite \textit{K. Said} and \textit{A. F. Zahra}, ``Global existence for wave and beam equations with double damping and a new power nonlinearity'', Preprint, arXiv:2405.17274 [math.AP] (2024) Full Text: arXiv OA License
Yagdjian, Karen; Galstian, Anahit Semilinear Klein-Gordon equation in space-time of black hole, which is gaining mass in the universe with accelerating expansion. arXiv:2404.09054 Preprint, arXiv:2404.09054 [math.AP] (2024). MSC: 35A01 35L15 35L71 35Q75 83C57 BibTeX Cite \textit{K. Yagdjian} and \textit{A. Galstian}, ``Semilinear Klein-Gordon equation in space-time of black hole, which is gaining mass in the universe with accelerating expansion'', Preprint, arXiv:2404.09054 [math.AP] (2024) Full Text: arXiv OA License
Dasgupta, Aparajita; Kumar, Vishvesh; Mondal, Shyam Swarup; Ruzhansky, Michael Higher order hypoelliptic damped wave equations on graded Lie groups with data from negative order Sobolev spaces. arXiv:2404.08766 Preprint, arXiv:2404.08766 [math.AP] (2024). MSC: 43A80 35L15 35L71 35A01 35L15 35B33 35B44 BibTeX Cite \textit{A. Dasgupta} et al., ``Higher order hypoelliptic damped wave equations on graded Lie groups with data from negative order Sobolev spaces'', Preprint, arXiv:2404.08766 [math.AP] (2024) Full Text: arXiv OA License
Dutykh, Denys; Leichtnam, Éric On complex algebraic singularities of some genuinely nonlinear PDEs. arXiv:2403.00874 Preprint, arXiv:2403.00874 [math.AP] (2024). MSC: 35A21 35L03 35L15 BibTeX Cite \textit{D. Dutykh} and \textit{É. Leichtnam}, ``On complex algebraic singularities of some genuinely nonlinear PDEs'', Preprint, arXiv:2403.00874 [math.AP] (2024) Full Text: arXiv OA License
Lin, Jiayun; Ikeda, Masahiro Upper estimates of the lifespan for the fractional wave equations with time-dependent damping and a power nonlinearity of subcritical and critical Fujita exponent. arXiv:2401.10552 Preprint, arXiv:2401.10552 [math.AP] (2024). MSC: 35B44 35A01 35L15 35L05 BibTeX Cite \textit{J. Lin} and \textit{M. Ikeda}, ``Upper estimates of the lifespan for the fractional wave equations with time-dependent damping and a power nonlinearity of subcritical and critical Fujita exponent'', Preprint, arXiv:2401.10552 [math.AP] (2024) Full Text: arXiv OA License
Chaili, Amina; Belhadji, Bochra; Beniani, Abderrahmane Decay rate of solutions to the Cauchy problem for a coupled system of viscoelastic wave equations with a strong delay in \(\mathbb{R}^n\). (English) Zbl 07897372 Stud. Univ. Babeș-Bolyai, Math. 68, No. 4, 895-905 (2023). MSC: 35L05 35L15 35L70 35B40 PDFBibTeX XMLCite \textit{A. Chaili} et al., Stud. Univ. Babeș-Bolyai, Math. 68, No. 4, 895--905 (2023; Zbl 07897372) Full Text: DOI
Bourega, Abdeldjabar; Ouchenane, Djamel Global nonexistence of solutions to a logarithmic nonlinear wave equation with infinite memory and delay term. (English) Zbl 07897368 Stud. Univ. Babeș-Bolyai, Math. 68, No. 4, 837-858 (2023). MSC: 35B05 35L05 35L15 PDFBibTeX XMLCite \textit{A. Bourega} and \textit{D. Ouchenane}, Stud. Univ. Babeș-Bolyai, Math. 68, No. 4, 837--858 (2023; Zbl 07897368) Full Text: DOI
Goto, Kazunori; Hirosawa, Fumihiko On the wave-like energy estimates of Klein-Gordon type equations with time dependent potential. (English) Zbl 07859845 Kähler, Uwe (ed.) et al., Analysis, applications, and computations. Proceedings of the 13th ISAAC congress, Ghent, Belgium, August 2–6, 2021. Cham: Birkhäuser. Trends Math., 635-646 (2023). MSC: 35B40 35L15 PDFBibTeX XMLCite \textit{K. Goto} and \textit{F. Hirosawa}, in: Analysis, applications, and computations. Proceedings of the 13th ISAAC congress, Ghent, Belgium, August 2--6, 2021. Cham: Birkhäuser. 635--646 (2023; Zbl 07859845) Full Text: DOI arXiv
Girardi, Giovanni A Klein-Gordon model with time-dependent coefficients and a memory-type nonlinearity. (English) Zbl 07859843 Kähler, Uwe (ed.) et al., Analysis, applications, and computations. Proceedings of the 13th ISAAC congress, Ghent, Belgium, August 2–6, 2021. Cham: Birkhäuser. Trends Math., 603-619 (2023). MSC: 35L71 35B33 35L15 PDFBibTeX XMLCite \textit{G. Girardi}, in: Analysis, applications, and computations. Proceedings of the 13th ISAAC congress, Ghent, Belgium, August 2--6, 2021. Cham: Birkhäuser. 603--619 (2023; Zbl 07859843) Full Text: DOI
Pham Trieu Duong The asymptotic estimates of the solutions to the linear damping models with spatial dependent coefficients. (English) Zbl 07859842 Kähler, Uwe (ed.) et al., Analysis, applications, and computations. Proceedings of the 13th ISAAC congress, Ghent, Belgium, August 2–6, 2021. Cham: Birkhäuser. Trends Math., 591-602 (2023). MSC: 35R11 35B40 35L15 35L20 PDFBibTeX XMLCite \textit{Pham Trieu Duong}, in: Analysis, applications, and computations. Proceedings of the 13th ISAAC congress, Ghent, Belgium, August 2--6, 2021. Cham: Birkhäuser. 591--602 (2023; Zbl 07859842) Full Text: DOI
Dorodnyi, M. A.; Suslina, T. A. Homogenization of hyperbolic equations: operator estimates with correctors taken into account. (English. Russian original) Zbl 1537.35036 Funct. Anal. Appl. 57, No. 4, 364-370 (2023); translation from Funkts. Anal. Prilozh. 57, No. 4, 123-129 (2023). MSC: 35B27 35L15 47D09 PDFBibTeX XMLCite \textit{M. A. Dorodnyi} and \textit{T. A. Suslina}, Funct. Anal. Appl. 57, No. 4, 364--370 (2023; Zbl 1537.35036); translation from Funkts. Anal. Prilozh. 57, No. 4, 123--129 (2023) Full Text: DOI
Negro, Giuseppe A sharpened Strichartz inequality for the wave equation. (Une inégalité de Strichartz précisée pour l’équation des ondes.) (English. French summary) Zbl 1536.35112 Ann. Sci. Éc. Norm. Supér. (4) 56, No. 6, 1685-1708 (2023). MSC: 35B45 35L05 35L15 PDFBibTeX XMLCite \textit{G. Negro}, Ann. Sci. Éc. Norm. Supér. (4) 56, No. 6, 1685--1708 (2023; Zbl 1536.35112) Full Text: DOI arXiv
Melliani, S.; Moujahid, A.; Gueradi, F.; Elomari, M. Generalized solution of non-homogeneous wave equation. (English) Zbl 1539.35031 Melliani, Said (ed.) et al., Recent advances in fuzzy sets theory, fractional calculus, dynamic systems and optimization. Contributions based on the presentations at the international conference on partial differential equations and applications, modeling and simulation, Beni Mellal, Morocco, from June 1–2, 2021. Cham: Springer. Lect. Notes Netw. Syst. 476, 210-218 (2023). MSC: 35D30 35L15 35L71 46F30 PDFBibTeX XMLCite \textit{S. Melliani} et al., Lect. Notes Netw. Syst. 476, 210--218 (2023; Zbl 1539.35031) Full Text: DOI
Zaitseva, N. V. On one Cauchy problem for a hyperbolic differential-difference equation. (English) Zbl 1534.35416 Differ. Equ. 59, No. 12, 1787-1792 (2023). MSC: 35R10 35C05 35L15 PDFBibTeX XMLCite \textit{N. V. Zaitseva}, Differ. Equ. 59, No. 12, 1787--1792 (2023; Zbl 1534.35416) Full Text: DOI
Demchenko, M. N. On the Cauchy problem for the wave equation in a two-dimensional domain with data on the boundary. (English. Russian original) Zbl 1532.35509 J. Math. Sci., New York 277, No. 4, 575-585 (2023); translation from Zap. Nauchn. Semin. POMI 493, 154-168 (2020). MSC: 35R25 35L15 PDFBibTeX XMLCite \textit{M. N. Demchenko}, J. Math. Sci., New York 277, No. 4, 575--585 (2023; Zbl 1532.35509); translation from Zap. Nauchn. Semin. POMI 493, 154--168 (2020) Full Text: DOI arXiv
Babich, V. M. Application of the Hadamard function to the mathematical description of a tsunami wave arising from a localized source. (English. Russian original) Zbl 1532.35006 J. Math. Sci., New York 277, No. 4, 487-491 (2023); translation from Zap. Nauchn. Semin. POMI 493, 22-28 (2020). MSC: 35A08 35C15 35L15 PDFBibTeX XMLCite \textit{V. M. Babich}, J. Math. Sci., New York 277, No. 4, 487--491 (2023; Zbl 1532.35006); translation from Zap. Nauchn. Semin. POMI 493, 22--28 (2020) Full Text: DOI
Taqbibt, Abdellah; Chaib, Mohamed; Melliani, Said Study of nonlinear wave equation with singular data by using generalized fixed point. (English) Zbl 1532.35120 J. Math. Sci., New York 271, No. 1, Series A, 18-30 (2023). MSC: 35D30 35L15 46F30 PDFBibTeX XMLCite \textit{A. Taqbibt} et al., J. Math. Sci., New York 271, No. 1, 18--30 (2023; Zbl 1532.35120) Full Text: DOI
Chen, Xia; Deya, Aurélien; Song, Jian; Tindel, Samy Hyperbolic Anderson model 2: Strichartz estimates and Stratonovich setting. (English) Zbl 1532.35552 Int. Math. Res. Not. 2023, No. 21, 18575-18628 (2023). MSC: 35R60 35L05 35L15 PDFBibTeX XMLCite \textit{X. Chen} et al., Int. Math. Res. Not. 2023, No. 21, 18575--18628 (2023; Zbl 1532.35552) Full Text: DOI arXiv
Beceanu, Marius; Soffer, Avy A positivity criterion for the wave equation and global existence of large solutions. (English) Zbl 1532.35304 Int. Math. Res. Not. 2023, No. 20, 17911-17952 (2023). MSC: 35L71 35A08 35L15 PDFBibTeX XMLCite \textit{M. Beceanu} and \textit{A. Soffer}, Int. Math. Res. Not. 2023, No. 20, 17911--17952 (2023; Zbl 1532.35304) Full Text: DOI arXiv
He, Jia Wei; Zhou, Yong Local/global existence analysis of fractional wave equations with exponential nonlinearity. (English) Zbl 1532.35483 Bull. Sci. Math. 189, Article ID 103357, 30 p. (2023). MSC: 35R11 35L15 35L71 PDFBibTeX XMLCite \textit{J. W. He} and \textit{Y. Zhou}, Bull. Sci. Math. 189, Article ID 103357, 30 p. (2023; Zbl 1532.35483) Full Text: DOI
Levenshtam, Valeriĭ Borisovich Reconstruction of a rapidly oscillating lowest coefficient and the source of a hyperbolic equation from the partial asymptotics of the solution. (Russian. English summary) Zbl 1538.35464 Vladikavkaz. Mat. Zh. 25, No. 3, 111-122 (2023); translation in Sib. Math. J. 65, No. 3, 709-717 (2024). MSC: 35R30 35B40 35B27 35L15 PDFBibTeX XMLCite \textit{V. B. Levenshtam}, Vladikavkaz. Mat. Zh. 25, No. 3, 111--122 (2023; Zbl 1538.35464); translation in Sib. Math. J. 65, No. 3, 709--717 (2024) Full Text: DOI MNR
Lou, Qiong; Luo, Shaoying The lifespan of smooth solutions to semilinear wave equations in Schwarzschild space-time. (English) Zbl 1538.35226 J. Partial Differ. Equations 36, No. 4, 404-413 (2023). MSC: 35L71 35L15 35B44 PDFBibTeX XMLCite \textit{Q. Lou} and \textit{S. Luo}, J. Partial Differ. Equations 36, No. 4, 404--413 (2023; Zbl 1538.35226) Full Text: DOI
Guo, Fei; Liang, Jinling; Xiao, Changwang Life-span of classical solutions to a semilinear wave equation with time-dependent damping. (English) Zbl 1538.35085 J. Partial Differ. Equations 36, No. 3, 235-261 (2023). MSC: 35B44 35A09 35L71 35L15 PDFBibTeX XMLCite \textit{F. Guo} et al., J. Partial Differ. Equations 36, No. 3, 235--261 (2023; Zbl 1538.35085) Full Text: DOI
Xiong, Yangmin; Mei, Xinyu Uniform attractor and its Kolmogorov entropy for a damped sup-cubic wave equation with state-dependent delay. (English) Zbl 1531.35084 Commun. Pure Appl. Anal. 22, No. 12, 3343-3362 (2023). MSC: 35B41 35B45 35L15 35L71 PDFBibTeX XMLCite \textit{Y. Xiong} and \textit{X. Mei}, Commun. Pure Appl. Anal. 22, No. 12, 3343--3362 (2023; Zbl 1531.35084) Full Text: DOI
Camliyurt, Guher; Kenig, Carlos E. Scattering for radial bounded solutions of focusing supercritical wave equations in odd dimensions. (English) Zbl 1531.35178 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 236, Article ID 113352, 76 p. (2023). MSC: 35L71 35B07 35L15 35P25 PDFBibTeX XMLCite \textit{G. Camliyurt} and \textit{C. E. Kenig}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 236, Article ID 113352, 76 p. (2023; Zbl 1531.35178) Full Text: DOI arXiv
Yüksekkaya, Hazal; Pişkin, Erhan Local existence, global existence and decay results of a logarithmic wave equation with delay term. (English) Zbl 1531.35077 Math. Methods Appl. Sci. 46, No. 11, 11802-11813 (2023). MSC: 35B40 35L15 35L71 PDFBibTeX XMLCite \textit{H. Yüksekkaya} and \textit{E. Pişkin}, Math. Methods Appl. Sci. 46, No. 11, 11802--11813 (2023; Zbl 1531.35077) Full Text: DOI
Datchev, Kiril; Shapiro, Jacob Exponential time-decay for a one-dimensional wave equation with coefficients of bounded variation. (English) Zbl 1530.35039 Math. Nachr. 296, No. 11, 4978-4994 (2023). MSC: 35B40 35L15 PDFBibTeX XMLCite \textit{K. Datchev} and \textit{J. Shapiro}, Math. Nachr. 296, No. 11, 4978--4994 (2023; Zbl 1530.35039) Full Text: DOI arXiv Backlinks: MO MO OA License
Lu, Xiaojun On the quadratic wave equation with randomized oscillating coefficients. (English) Zbl 1530.35139 Math. Methods Appl. Sci. 46, No. 9, 10730-10748 (2023). MSC: 35L15 35L90 35S10 81V10 PDFBibTeX XMLCite \textit{X. Lu}, Math. Methods Appl. Sci. 46, No. 9, 10730--10748 (2023; Zbl 1530.35139) Full Text: DOI
Baghaturia, Giorgi; Menteshashvili, Marina Application of general integral of quasi-linear equation to solving of nonlinear Cauchy problem. (English) Zbl 1531.35181 Bull. TICMI 27, No. 2, 59-65 (2023). MSC: 35L80 35L15 35L72 PDFBibTeX XMLCite \textit{G. Baghaturia} and \textit{M. Menteshashvili}, Bull. TICMI 27, No. 2, 59--65 (2023; Zbl 1531.35181) Full Text: Link
Messaoudi, Salim A.; Lacheheb, Ilyes A general decay result for the Cauchy problem of a fractional Laplace viscoelastic equation. (English) Zbl 1530.35055 Math. Methods Appl. Sci. 46, No. 5, 5964-5978 (2023). MSC: 35B40 35L15 35R09 35R11 74K20 45M10 PDFBibTeX XMLCite \textit{S. A. Messaoudi} and \textit{I. Lacheheb}, Math. Methods Appl. Sci. 46, No. 5, 5964--5978 (2023; Zbl 1530.35055) Full Text: DOI
Ebert, Marcelo Rempel; Marques, Jorge Critical exponent of Fujita type for semilinear wave equations in Friedmann-Lemaître-Robertson-Walker spacetime. (English) Zbl 1529.35036 Math. Methods Appl. Sci. 46, No. 2, 2602-2635 (2023). MSC: 35B33 35L15 35L71 PDFBibTeX XMLCite \textit{M. R. Ebert} and \textit{J. Marques}, Math. Methods Appl. Sci. 46, No. 2, 2602--2635 (2023; Zbl 1529.35036) Full Text: DOI
Allahverdiev, Bilender P.; Tuna, Hüseyin; Isayev, Hamlet A. Impulsive regular \(q\)-Dirac systems. (English) Zbl 1529.39002 Electron. J. Differ. Equ. 2023, Paper No. 74, 10 p. (2023). MSC: 39A13 39A12 05A30 34L10 35L15 34B27 PDFBibTeX XMLCite \textit{B. P. Allahverdiev} et al., Electron. J. Differ. Equ. 2023, Paper No. 74, 10 p. (2023; Zbl 1529.39002) Full Text: Link
Morgan, Katrina; Wunsch, Jared Generalized Price’s law on fractional-order asymptotically flat stationary spacetimes. (English) Zbl 1529.35066 Math. Res. Lett. 30, No. 3, 865-911 (2023). MSC: 35B40 35L15 PDFBibTeX XMLCite \textit{K. Morgan} and \textit{J. Wunsch}, Math. Res. Lett. 30, No. 3, 865--911 (2023; Zbl 1529.35066) Full Text: DOI arXiv
Abbrescia, Leonardo Enrique; Wong, Willie Wai Yeung Geometric analysis of \(1+1\) dimensional quasilinear wave equations. (English) Zbl 1537.35244 Math. Res. Lett. 30, No. 3, 633-661 (2023). Reviewer: Dongbing Zha (Shanghai) MSC: 35L72 35A01 35A02 35L15 PDFBibTeX XMLCite \textit{L. E. Abbrescia} and \textit{W. W. Y. Wong}, Math. Res. Lett. 30, No. 3, 633--661 (2023; Zbl 1537.35244) Full Text: DOI arXiv
Jendrej, Jacek; Lawrie, Andrew Soliton resolution for the energy-critical nonlinear wave equation in the radial case. (English) Zbl 1529.35304 Ann. PDE 9, No. 2, Paper No. 18, 117 p. (2023). MSC: 35L71 35B40 35C08 35L15 37K40 PDFBibTeX XMLCite \textit{J. Jendrej} and \textit{A. Lawrie}, Ann. PDE 9, No. 2, Paper No. 18, 117 p. (2023; Zbl 1529.35304) Full Text: DOI arXiv
Yüksekkaya, Hazal; Pişkin, Erhan Existence and exponential decay of a logarithmic wave equation with distributed delay. (English) Zbl 1538.35074 Miskolc Math. Notes 24, No. 2, 1057-1071 (2023). MSC: 35B40 35L15 35L70 PDFBibTeX XMLCite \textit{H. Yüksekkaya} and \textit{E. Pişkin}, Miskolc Math. Notes 24, No. 2, 1057--1071 (2023; Zbl 1538.35074) Full Text: DOI
Kirane, Mokhtar; Fino, Ahmad Z.; Alsaedi, Ahmed; Ahmad, Bashir Global existence for time-dependent damped wave equations with nonlinear memory. (English) Zbl 1529.35305 Adv. Nonlinear Anal. 12, Article ID 20230111, 21 p. (2023). MSC: 35L71 35A01 35L15 35R09 PDFBibTeX XMLCite \textit{M. Kirane} et al., Adv. Nonlinear Anal. 12, Article ID 20230111, 21 p. (2023; Zbl 1529.35305) Full Text: DOI OA License
Wang, Chengbo Sharp local well-posedness for quasilinear wave equations with spherical symmetry. (English) Zbl 1533.35214 J. Eur. Math. Soc. (JEMS) 25, No. 11, 4459-4520 (2023). MSC: 35L72 35B30 35B45 35B65 35L15 42B25 42B37 46B70 PDFBibTeX XMLCite \textit{C. Wang}, J. Eur. Math. Soc. (JEMS) 25, No. 11, 4459--4520 (2023; Zbl 1533.35214) Full Text: DOI arXiv
Inami, Kotaro; Suzuki, Soichiro Equivalence between the energy decay of fractional damped Klein-Gordon equations and geometric conditions for damping coefficients. (English) Zbl 1528.35227 Proc. Am. Math. Soc., Ser. B 10, 422-430 (2023). MSC: 35R11 35B40 35L15 42A38 PDFBibTeX XMLCite \textit{K. Inami} and \textit{S. Suzuki}, Proc. Am. Math. Soc., Ser. B 10, 422--430 (2023; Zbl 1528.35227) Full Text: DOI arXiv OA License
Ogbiyele, Paul A.; Arawomo, Peter O. General energy decay for wave equation with space-time potential and time delay in \(\mathbb{R}^n\). (English) Zbl 1538.35061 Afr. Mat. 34, No. 4, Paper No. 75, 11 p. (2023). MSC: 35B40 93D15 35L15 35L71 PDFBibTeX XMLCite \textit{P. A. Ogbiyele} and \textit{P. O. Arawomo}, Afr. Mat. 34, No. 4, Paper No. 75, 11 p. (2023; Zbl 1538.35061) Full Text: DOI
Aslan, Halit Sevki; Rempel, Ebert Marcelo On the asymptotic behavior of the energy for evolution models with oscillating time-dependent damping. (English) Zbl 1528.35010 Asymptotic Anal. 135, No. 1-2, 185-207 (2023). MSC: 35B40 35L15 35R11 PDFBibTeX XMLCite \textit{H. S. Aslan} and \textit{E. M. Rempel}, Asymptotic Anal. 135, No. 1--2, 185--207 (2023; Zbl 1528.35010) Full Text: DOI
Collot, Charles; Duyckaerts, Thomas; Kenig, Carlos; Merle, Frank On classification of non-radiative solutions for various energy-critical wave equations. (English) Zbl 1527.35180 Adv. Math. 434, Article ID 109337, 91 p. (2023). MSC: 35L71 35L15 PDFBibTeX XMLCite \textit{C. Collot} et al., Adv. Math. 434, Article ID 109337, 91 p. (2023; Zbl 1527.35180) Full Text: DOI arXiv
Li, Jichun; Zhu, Li Analysis and application of two novel finite element methods for solving Ziolkowski’s PML model in the integro-differential form. (English) Zbl 07754849 SIAM J. Numer. Anal. 61, No. 5, 2209-2236 (2023). MSC: 65M60 65M12 78A25 78M10 35R09 35L15 35Q61 PDFBibTeX XMLCite \textit{J. Li} and \textit{L. Zhu}, SIAM J. Numer. Anal. 61, No. 5, 2209--2236 (2023; Zbl 07754849) Full Text: DOI
Discacciati, Marco; Garetto, Claudia; Loizou, Costas On the wave equation with space dependent coefficients: singularities and lower order terms. (English) Zbl 1526.35279 Acta Appl. Math. 187, Paper No. 10, 31 p. (2023). MSC: 35R05 35D99 35L15 PDFBibTeX XMLCite \textit{M. Discacciati} et al., Acta Appl. Math. 187, Paper No. 10, 31 p. (2023; Zbl 1526.35279) Full Text: DOI arXiv OA License
Cerrai, Sandra; Xie, Mengzi On the small noise limit in the Smoluchowski-Kramers approximation of nonlinear wave equations with variable friction. (English) Zbl 1526.60023 Trans. Am. Math. Soc. 376, No. 11, 7651-7689 (2023). Reviewer: Rózsa Horváth-Bokor (Budakalász) MSC: 60F10 35R60 35L15 60H15 PDFBibTeX XMLCite \textit{S. Cerrai} and \textit{M. Xie}, Trans. Am. Math. Soc. 376, No. 11, 7651--7689 (2023; Zbl 1526.60023) Full Text: DOI arXiv
Liu, Mengyun; Wang, Chengbo The blow up of solutions to semilinear wave equations on asymptotically Euclidean manifolds. (English) Zbl 1525.35046 Discrete Contin. Dyn. Syst. 43, No. 11, 3987-4009 (2023). MSC: 35B44 35B09 35B33 35B40 35L15 35L71 58J45 PDFBibTeX XMLCite \textit{M. Liu} and \textit{C. Wang}, Discrete Contin. Dyn. Syst. 43, No. 11, 3987--4009 (2023; Zbl 1525.35046) Full Text: DOI arXiv
Jendrej, Jacek; Lawrie, Andrew Uniqueness of two-bubble wave maps in high equivariance classes. (English) Zbl 1529.35303 Commun. Pure Appl. Math. 76, No. 8, 1608-1656 (2023). MSC: 35L71 35L15 35B38 58J45 53C43 58K05 58E20 PDFBibTeX XMLCite \textit{J. Jendrej} and \textit{A. Lawrie}, Commun. Pure Appl. Math. 76, No. 8, 1608--1656 (2023; Zbl 1529.35303) Full Text: DOI arXiv OA License
Georgiev, Vladimir; Kubo, Hideo Global solvability for nonlinear wave equations with singular potential. (English) Zbl 1523.35222 J. Differ. Equations 375, 514-537 (2023). MSC: 35L71 35B33 35L15 35L81 PDFBibTeX XMLCite \textit{V. Georgiev} and \textit{H. Kubo}, J. Differ. Equations 375, 514--537 (2023; Zbl 1523.35222) Full Text: DOI arXiv
Carrião, Paulo Cesar; Miyagaki, Olímpio Hiroshi; Vicente, André Exponential decay for semilinear wave equation with localized damping in the hyperbolic space. (English) Zbl 1526.35053 Math. Nachr. 296, No. 1, 130-151 (2023). MSC: 35B40 35L15 35L71 PDFBibTeX XMLCite \textit{P. C. Carrião} et al., Math. Nachr. 296, No. 1, 130--151 (2023; Zbl 1526.35053) Full Text: DOI
Palmieri, Alessandro Lifespan estimates for local solutions to the semilinear wave equation in Einstein-de Sitter Spacetime. (English) Zbl 1523.35074 Appl. Anal. 102, No. 13, 3577-3608 (2023). MSC: 35B44 35L15 35L71 33C10 PDFBibTeX XMLCite \textit{A. Palmieri}, Appl. Anal. 102, No. 13, 3577--3608 (2023; Zbl 1523.35074) Full Text: DOI arXiv
Yu, Dongxiao A uniqueness theorem for 3D semilinear wave equations satisfying the null condition. (English) Zbl 1522.35007 Pure Appl. Anal. 5, No. 3, 601-641 (2023). MSC: 35A02 35L15 35L71 PDFBibTeX XMLCite \textit{D. Yu}, Pure Appl. Anal. 5, No. 3, 601--641 (2023; Zbl 1522.35007) Full Text: DOI arXiv
Hassell, Andrew; Rozendaal, Jan \(L^p\) and \(\mathcal{H}_{FIO}^p\) regularity for wave equations with rough coefficients. (English) Zbl 1522.35130 Pure Appl. Anal. 5, No. 3, 541-599 (2023). MSC: 35B65 35A27 35L15 35S30 35R05 42B37 PDFBibTeX XMLCite \textit{A. Hassell} and \textit{J. Rozendaal}, Pure Appl. Anal. 5, No. 3, 541--599 (2023; Zbl 1522.35130) Full Text: DOI arXiv
Ikehata, Ryo A note on local energy decay results for wave equations with a potential. (English) Zbl 1522.35494 Asymptotic Anal. 134, No. 1-2, 281-295 (2023). MSC: 35Q74 74B20 35L05 35L15 PDFBibTeX XMLCite \textit{R. Ikehata}, Asymptotic Anal. 134, No. 1--2, 281--295 (2023; Zbl 1522.35494) Full Text: DOI arXiv