Tang, Zhijun; Yan, Senlin; Xu, Yao; Zhong, Chengkui Finite-dimensionality of attractors for wave equations with degenerate nonlocal damping. (English) Zbl 07906828 Discrete Contin. Dyn. Syst. 45, No. 1, 219-247 (2025). MSC: 37L30 35L71 35L20 PDFBibTeX XMLCite \textit{Z. Tang} et al., Discrete Contin. Dyn. Syst. 45, No. 1, 219--247 (2025; Zbl 07906828) Full Text: DOI arXiv
Kachakhidze, Nikoloz; Papukashvili, Archil; Papukashvili, Giorgi; Peradze, Jemal; Sharikadze, Meri On the Test Results of a Method of Solution of the Nonlinear Integro-Differential Equation of String Oscillation. (English) Zbl 07900236 Bull. TICMI 28, No. 1, 51-56 (2024). MSC: 35L20 65H10 65M60 65N06 74G15 PDFBibTeX XMLCite \textit{N. Kachakhidze} et al., Bull. TICMI 28, No. 1, 51--56 (2024; Zbl 07900236) Full Text: Link
Kaplun, A. V. Canonical representation of the eikonal algebra of three-ray star. (English. Russian original) Zbl 07897428 J. Math. Sci., New York 283, No. 4, 532-548 (2024); translation from Zap. Nauchn. Semin. POMI 506, 57-78 (2021). MSC: 35R02 35L20 PDFBibTeX XMLCite \textit{A. V. Kaplun}, J. Math. Sci., New York 283, No. 4, 532--548 (2024; Zbl 07897428); translation from Zap. Nauchn. Semin. POMI 506, 57--78 (2021) Full Text: DOI
Belishev, M. I.; Karazeeva, N. A. Toeplitz matrices in the BC-method for the plane domains. (English. Russian original) Zbl 07897425 J. Math. Sci., New York 283, No. 4, 505-515 (2024); translation from Zap. Nauchn. Semin. POMI 506, 21-35 (2021). MSC: 35R30 35L20 65M32 PDFBibTeX XMLCite \textit{M. I. Belishev} and \textit{N. A. Karazeeva}, J. Math. Sci., New York 283, No. 4, 505--515 (2024; Zbl 07897425); translation from Zap. Nauchn. Semin. POMI 506, 21--35 (2021) Full Text: DOI
Feng, Baowei Asymptotic behavior of a semilinear non-autonomous wave equation with distributed delay and analytic nonlinearity. (English) Zbl 07896365 Nonlinearity 37, No. 9, Article ID 095026, 33 p. (2024). MSC: 35B40 35L20 35L71 35R09 28C15 46E05 93D15 PDFBibTeX XMLCite \textit{B. Feng}, Nonlinearity 37, No. 9, Article ID 095026, 33 p. (2024; Zbl 07896365) Full Text: DOI
Kerker, Mohamed Amine Blow-up for semilinear wave equations with logarithmic source term at supercritical initial energy level. (English) Zbl 07896260 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 31, No. 4, 241-250 (2024). MSC: 35B44 35L20 35L71 PDFBibTeX XMLCite \textit{M. A. Kerker}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 31, No. 4, 241--250 (2024; Zbl 07896260) Full Text: Link Link
Dzhamalov, S. Z.; Khudoykulov, Sh. Sh. On linear two-point inverse problem for a multidimensional wave equation with semi-nonlocal boundary conditions. (English) Zbl 07896198 Lobachevskii J. Math. 45, No. 3, 1059-1071 (2024). MSC: 35R30 35L20 PDFBibTeX XMLCite \textit{S. Z. Dzhamalov} and \textit{Sh. Sh. Khudoykulov}, Lobachevskii J. Math. 45, No. 3, 1059--1071 (2024; Zbl 07896198) Full Text: DOI
Lekdim, Billal; Aili, Mohammed; Khemmoudj, Ammar General decay of a singular viscoelastic wave equation with distributed delay and integral condition. (English) Zbl 07895261 Mem. Differ. Equ. Math. Phys. 92, 129-140 (2024). MSC: 35B40 35L20 35L81 PDFBibTeX XMLCite \textit{B. Lekdim} et al., Mem. Differ. Equ. Math. Phys. 92, 129--140 (2024; Zbl 07895261) Full Text: Link
Cavalcanti, Marcelo M.; Domingos Cavalcanti, Valéria N.; Vicente, André Homogenization and uniform stabilization of the wave equation in perforated domains. (English) Zbl 07893989 J. Differ. Equations 402, 218-249 (2024). Reviewer: Abdelhamid Ainouz (Algiers) MSC: 35B27 35B40 35L20 35L71 93B07 PDFBibTeX XMLCite \textit{M. M. Cavalcanti} et al., J. Differ. Equations 402, 218--249 (2024; Zbl 07893989) Full Text: DOI
Liu, Yang; Li, Zhang On a viscoelastic Kirchhoff equation with fractional Laplacian. (English) Zbl 07893918 Discrete Contin. Dyn. Syst., Ser. S 17, No. 8, 2543-2565 (2024). MSC: 35R11 35B40 35B44 35L20 35L71 74H20 PDFBibTeX XMLCite \textit{Y. Liu} and \textit{Z. Li}, Discrete Contin. Dyn. Syst., Ser. S 17, No. 8, 2543--2565 (2024; Zbl 07893918) Full Text: DOI
Korzyuk, V. I.; Rudzko, J. V. Classical solution to mixed problems from the theory of longitudinal impact on an elastic semi-infinite rod in the case of separation of the impacting body after the collision. (English) Zbl 07889719 Vestsi Nats. Akad. Navuk Belarusi, Ser. Fiz.-Mat. Navuk 60, No. 2, 95-105 (2024). MSC: 74K10 35A09 35A30 35L20 PDFBibTeX XMLCite \textit{V. I. Korzyuk} and \textit{J. V. Rudzko}, Vestsi Nats. Akad. Navuk Belarusi, Ser. Fiz.-Mat. Navuk 60, No. 2, 95--105 (2024; Zbl 07889719) Full Text: Link
Yang, Bin; Qin, Yuming; Miranville, Alain; Wang, Ke Existence and regularity of global attractors for a Kirchhoff wave equation with strong damping and memory. (English) Zbl 07885643 Nonlinear Anal., Real World Appl. 79, Article ID 104096, 14 p. (2024). MSC: 35B41 35L20 35L72 35R09 PDFBibTeX XMLCite \textit{B. Yang} et al., Nonlinear Anal., Real World Appl. 79, Article ID 104096, 14 p. (2024; Zbl 07885643) Full Text: DOI arXiv
Lomov, I. S. Generalized solution of a mixed problem for the wave equation with a nonsmooth right-hand side. (English) Zbl 07883843 Dokl. Math. 109, No. 2, 121-124 (2024). MSC: 35C10 35D30 35L20 PDFBibTeX XMLCite \textit{I. S. Lomov}, Dokl. Math. 109, No. 2, 121--124 (2024; Zbl 07883843) Full Text: DOI
Gallistl, Dietmar; Maier, Roland Localized implicit time stepping for the wave equation. (English) Zbl 07882251 SIAM J. Numer. Anal. 62, No. 4, 1589-1608 (2024). MSC: 65M12 65N30 35L20 PDFBibTeX XMLCite \textit{D. Gallistl} and \textit{R. Maier}, SIAM J. Numer. Anal. 62, No. 4, 1589--1608 (2024; Zbl 07882251) Full Text: DOI arXiv
Coclite, Giuseppe Maria; De Nitti, Nicola; Maddalena, Francesco; Orlando, Gianluca; Zuazua, Enrique Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings. (English) Zbl 07880949 Math. Models Methods Appl. Sci. 34, No. 8, 1445-1482 (2024). MSC: 35L71 35B40 35L20 74H40 74M15 PDFBibTeX XMLCite \textit{G. M. Coclite} et al., Math. Models Methods Appl. Sci. 34, No. 8, 1445--1482 (2024; Zbl 07880949) Full Text: DOI arXiv
Boulaaras, Salah; Jan, Rashid; Choucha, Abdelbaki; Zaraï, Aderrahmane; Benzahi, Mourad Blow-up and lifespan of solutions for elastic membrane equation with distributed delay and logarithmic nonlinearity. (English) Zbl 07880456 Bound. Value Probl. 2024, Paper No. 36, 13 p. (2024). MSC: 35B44 35B40 35L20 35L71 PDFBibTeX XMLCite \textit{S. Boulaaras} et al., Bound. Value Probl. 2024, Paper No. 36, 13 p. (2024; Zbl 07880456) Full Text: DOI OA License
Liu, Ruoyuan Global well-posedness of the two-dimensional stochastic viscous nonlinear wave equations. (English) Zbl 07880258 Stoch. Partial Differ. Equ., Anal. Comput. 12, No. 2, 898-931 (2024). MSC: 35R60 35L20 35L71 60H15 PDFBibTeX XMLCite \textit{R. Liu}, Stoch. Partial Differ. Equ., Anal. Comput. 12, No. 2, 898--931 (2024; Zbl 07880258) Full Text: DOI arXiv OA License
Claret, Sue; Lemoine, Jérôme; Münch, Arnaud On the exact boundary controllability of semilinear wave equations. (English) Zbl 07878649 SIAM J. Control Optim. 62, No. 4, 1953-1976 (2024). MSC: 35L71 35L20 93B05 PDFBibTeX XMLCite \textit{S. Claret} et al., SIAM J. Control Optim. 62, No. 4, 1953--1976 (2024; Zbl 07878649) Full Text: DOI arXiv
Liao, Menglan; Hajjej, Zayd A class of viscoelastic evolution equation on manifolds with conical singularities. (English) Zbl 07878455 Evol. Equ. Control Theory 13, No. 3, 767-786 (2024). MSC: 35R01 35B44 35L20 35L71 35R09 PDFBibTeX XMLCite \textit{M. Liao} and \textit{Z. Hajjej}, Evol. Equ. Control Theory 13, No. 3, 767--786 (2024; Zbl 07878455) Full Text: DOI
Zhu, Xiangming; Zhong, Chengkui A note on the polynomially attracting sets for dynamical systems. (English) Zbl 07876098 J. Dyn. Differ. Equations 36, No. 2, 1873-1878 (2024). MSC: 35B41 35L20 35L71 PDFBibTeX XMLCite \textit{X. Zhu} and \textit{C. Zhong}, J. Dyn. Differ. Equations 36, No. 2, 1873--1878 (2024; Zbl 07876098) Full Text: DOI
Chang, Ningning; Geng, Jiansheng; Lou, Zhaowei A KAM theorem for the time quasi-periodic reversible perturbations of linear wave equations beyond Brjuno conditions. (English) Zbl 07876070 J. Dyn. Differ. Equations 36, No. 2, 1065-1113 (2024). MSC: 35L71 35B15 35L20 37K55 PDFBibTeX XMLCite \textit{N. Chang} et al., J. Dyn. Differ. Equations 36, No. 2, 1065--1113 (2024; Zbl 07876070) Full Text: DOI
Ahmima, Afaf; Fareh, Abdelfeteh; Messaoudi, Salim A. Well posedness and exponential stability of a porous elastic system free of second spectrum. (English) Zbl 07873862 Acta Appl. Math. 191, Paper No. 11, 11 p. (2024). MSC: 35B40 35L20 74F05 93D05 93D23 PDFBibTeX XMLCite \textit{A. Ahmima} et al., Acta Appl. Math. 191, Paper No. 11, 11 p. (2024; Zbl 07873862) Full Text: DOI
Hao, Jianghao; Wang, Yue Stabilization of string-beam-string transmission systems with localized frictional damping and delay. (English) Zbl 07872005 Math. Methods Appl. Sci. 47, No. 11, 8825-8839 (2024). MSC: 35L20 35B35 93D20 PDFBibTeX XMLCite \textit{J. Hao} and \textit{Y. Wang}, Math. Methods Appl. Sci. 47, No. 11, 8825--8839 (2024; Zbl 07872005) Full Text: DOI
Li, Xinhua; Sun, Chunyou; Wen, Lan Stability for some wave equations with singular damping. (English) Zbl 07869062 J. Differ. Equations 403, 510-547 (2024). Reviewer: Kaïs Ammari (Monastir) MSC: 35B40 35L20 35S16 PDFBibTeX XMLCite \textit{X. Li} et al., J. Differ. Equations 403, 510--547 (2024; Zbl 07869062) Full Text: DOI
Zhang, Hongwei; Su, Xiao; Liu, Shuo Global existence and blowup of solutions to a class of wave equations with Hartree type nonlinearity. (English) Zbl 07867492 Nonlinearity 37, No. 6, Article ID 065011, 15 p. (2024). MSC: 35B44 35L20 35L71 PDFBibTeX XMLCite \textit{H. Zhang} et al., Nonlinearity 37, No. 6, Article ID 065011, 15 p. (2024; Zbl 07867492) Full Text: DOI
Mercado-Saucedo, Alberto An inverse problem for a transmission wave equation with a flat interface in \(\mathbb{R}^n\). (English) Zbl 07867325 Inverse Probl. 40, No. 5, Article ID 055012, 19 p. (2024). MSC: 35R30 35L20 35R05 PDFBibTeX XMLCite \textit{A. Mercado-Saucedo}, Inverse Probl. 40, No. 5, Article ID 055012, 19 p. (2024; Zbl 07867325) Full Text: DOI
Fressart, Élise; Verfürth, Barbara Wave propagation in high-contrast media: periodic and beyond. (English) Zbl 07866837 Comput. Methods Appl. Math. 24, No. 2, 345-362 (2024). MSC: 65M70 35B27 35L20 65M12 78M40 PDFBibTeX XMLCite \textit{É. Fressart} and \textit{B. Verfürth}, Comput. Methods Appl. Math. 24, No. 2, 345--362 (2024; Zbl 07866837) Full Text: DOI arXiv
Repin, S. I. Identities for measures of deviation from solutions to parabolic-hyperbolic equations. (English) Zbl 07866003 Comput. Math. Math. Phys. 64, No. 5, 1044-1057 (2024). MSC: 35L20 35B20 35B30 PDFBibTeX XMLCite \textit{S. I. Repin}, Comput. Math. Math. Phys. 64, No. 5, 1044--1057 (2024; Zbl 07866003) Full Text: DOI
Feppon, F.; Ammari, H. Subwavelength resonant acoustic scattering in fast time-modulated media. (English. French summary) Zbl 07864506 J. Math. Pures Appl. (9) 187, 233-293 (2024). MSC: 35B34 35B10 35B40 45M05 35L05 35L20 PDFBibTeX XMLCite \textit{F. Feppon} and \textit{H. Ammari}, J. Math. Pures Appl. (9) 187, 233--293 (2024; Zbl 07864506) Full Text: DOI
Boulaaras, Salah; Choucha, Abdelbaki; Ouchenane, Djamel; Jan, Rashid Blow up, growth, and decay of solutions for a class of coupled nonlinear viscoelastic Kirchhoff equations with distributed delay and variable exponents. (English) Zbl 07861750 J. Inequal. Appl. 2024, Paper No. 55, 32 p. (2024). MSC: 35B40 35L20 35B44 35R09 PDFBibTeX XMLCite \textit{S. Boulaaras} et al., J. Inequal. Appl. 2024, Paper No. 55, 32 p. (2024; Zbl 07861750) Full Text: DOI OA License
Berkani, Amirouche; Hamdi, Soumia; Ait Abbas, Hamou Vibration control of a flexible satellite system with viscoelastic damping. (English) Zbl 1537.93339 Int. J. Control 97, No. 4, 673-689 (2024). MSC: 93C20 35L20 93D15 93D20 70L05 PDFBibTeX XMLCite \textit{A. Berkani} et al., Int. J. Control 97, No. 4, 673--689 (2024; Zbl 1537.93339) Full Text: DOI
Kim, Minhyun Nonlocal functionals with non-standard growth. (English) Zbl 07857647 Cardona, Duván (ed.) et al., Extended abstracts 2021/2022. Methusalem lectures, Ghent, Belgium. Cham: Birkhäuser. Trends Math., Res. Perspect. Ghent Anal. PDE Cent. 3, 27-36 (2024). MSC: 35B65 35A15 35L20 35R11 47G20 PDFBibTeX XMLCite \textit{M. Kim}, Trends Math., Res. Perspect. Ghent Anal. PDE Cent. 3, 27--36 (2024; Zbl 07857647) Full Text: DOI
Kafini, Mohammad; Al-Gharabli, Mohammad M.; Al-Mahdi, Adel M. Existence and blow-up study of a quasilinear wave equation with damping and source terms of variable exponents-type acting on the boundary. (English) Zbl 07856633 J. Dyn. Control Syst. 30, No. 2, Paper No. 11, 22 p. (2024). MSC: 35B44 35L20 35L72 PDFBibTeX XMLCite \textit{M. Kafini} et al., J. Dyn. Control Syst. 30, No. 2, Paper No. 11, 22 p. (2024; Zbl 07856633) Full Text: DOI
Kalimeris, Konstantinos; Mindrinos, Leonidas Scattering problems for the wave equation in 1D: D’Alembert-type representations and a reconstruction method. (English) Zbl 07856427 SN Partial Differ. Equ. Appl. 5, No. 2, Paper No. 5, 25 p. (2024). MSC: 35L20 35L05 35A22 35R30 35S30 PDFBibTeX XMLCite \textit{K. Kalimeris} and \textit{L. Mindrinos}, SN Partial Differ. Equ. Appl. 5, No. 2, Paper No. 5, 25 p. (2024; Zbl 07856427) Full Text: DOI arXiv OA License
Song, Zefang; Di, Huafei Instability analysis and regularization approximation to the forward/backward problems for fractional damped wave equations with random noise. (English) Zbl 07856331 Appl. Numer. Math. 199, 177-212 (2024). MSC: 35A35 35B35 35L20 35L71 35R11 35R60 PDFBibTeX XMLCite \textit{Z. Song} and \textit{H. Di}, Appl. Numer. Math. 199, 177--212 (2024; Zbl 07856331) Full Text: DOI
Chitour, Yacine; Nguyen, Hoai-Minh Exponential decay of solutions of damped wave equations in one dimensional space in the lp framework for various boundary conditions. (English) Zbl 07854912 ESAIM, Control Optim. Calc. Var. 30, Paper No. 38, 26 p. (2024). MSC: 35B40 35L05 35L20 93D20 93D23 PDFBibTeX XMLCite \textit{Y. Chitour} and \textit{H.-M. Nguyen}, ESAIM, Control Optim. Calc. Var. 30, Paper No. 38, 26 p. (2024; Zbl 07854912) Full Text: DOI arXiv
Vitillaro, Enzo Three evolution problems modeling the interaction between acoustic waves and non-locally reacting surfaces. (English) Zbl 07854124 J. Evol. Equ. 24, No. 2, Paper No. 41, 51 p. (2024). MSC: 35Q35 35L05 35L10 35L20 35L51 76N30 76Q05 PDFBibTeX XMLCite \textit{E. Vitillaro}, J. Evol. Equ. 24, No. 2, Paper No. 41, 51 p. (2024; Zbl 07854124) Full Text: DOI arXiv OA License
Zhu, Xiangming Uniform attractors for wave equations with critical and nonautonomous nonlinearity. (English) Zbl 07852432 J. Math. Anal. Appl. 531, No. 2, Part 2, Article ID 127841, 13 p. (2024). MSC: 35B41 35L20 35L71 PDFBibTeX XMLCite \textit{X. Zhu}, J. Math. Anal. Appl. 531, No. 2, Part 2, Article ID 127841, 13 p. (2024; Zbl 07852432) Full Text: DOI
Ruzhansky, Michael; Shaimardan, Serikbol; Yeskermessuly, Alibek Wave equation for Sturm-Liouville operator with singular potentials. (English) Zbl 07852374 J. Math. Anal. Appl. 531, No. 1, Part 2, Article ID 127783, 23 p. (2024). MSC: 35L20 35D30 35R05 PDFBibTeX XMLCite \textit{M. Ruzhansky} et al., J. Math. Anal. Appl. 531, No. 1, Part 2, Article ID 127783, 23 p. (2024; Zbl 07852374) Full Text: DOI arXiv
Yin, Ziyang; Wang, Shubin General decay and blow-up of solution for a viscoelastic wave equation with nonlinear degenerate damping and source terms. (English) Zbl 07852365 J. Math. Anal. Appl. 531, No. 1, Part 2, Article ID 127750, 20 p. (2024). MSC: 35B40 35B44 35L20 35L71 35R09 74D05 PDFBibTeX XMLCite \textit{Z. Yin} and \textit{S. Wang}, J. Math. Anal. Appl. 531, No. 1, Part 2, Article ID 127750, 20 p. (2024; Zbl 07852365) Full Text: DOI
Rouveyrol, Marc Stabilization of the wave equation on larger-dimension tori with rough dampings. (English) Zbl 07851950 Pure Appl. Anal. 6, No. 2, 487-520 (2024). MSC: 35B40 35A27 35L05 35L20 PDFBibTeX XMLCite \textit{M. Rouveyrol}, Pure Appl. Anal. 6, No. 2, 487--520 (2024; Zbl 07851950) Full Text: DOI arXiv
Zhang, Hua-Lei Polynomial stability of one-dimensional wave equation with local degenerate Kelvin-Voigt damping and discontinuous coefficients. (English) Zbl 07851208 ZAMM, Z. Angew. Math. Mech. 104, No. 3, Article ID e202200343, 23 p. (2024). MSC: 35B40 35L20 35R05 PDFBibTeX XMLCite \textit{H.-L. Zhang}, ZAMM, Z. Angew. Math. Mech. 104, No. 3, Article ID e202200343, 23 p. (2024; Zbl 07851208) Full Text: DOI
Laoubi, K.; Seba, D. Polynomial energy decay rate for the wave equation with kinetic boundary condition. (English) Zbl 07850933 Acta Appl. Math. 191, Paper No. 1, 15 p. (2024). MSC: 35B40 35L20 PDFBibTeX XMLCite \textit{K. Laoubi} and \textit{D. Seba}, Acta Appl. Math. 191, Paper No. 1, 15 p. (2024; Zbl 07850933) Full Text: DOI
Saba, Désiré; Bayili, Gilbert; Nicaise, Serge Polynomial stabilization of the wave equation with a time varying delay term in the dynamical control. (English) Zbl 07848717 J. Math. Anal. Appl. 538, No. 1, Article ID 128441, 19 p. (2024). MSC: 35B40 35L20 PDFBibTeX XMLCite \textit{D. Saba} et al., J. Math. Anal. Appl. 538, No. 1, Article ID 128441, 19 p. (2024; Zbl 07848717) Full Text: DOI
Zhang, Guang; Chai, Shugen Stabilization for some degenerate wave equations. (English) Zbl 07846978 Evol. Equ. Control Theory 13, No. 2, 316-328 (2024). MSC: 35L20 35L80 93D15 PDFBibTeX XMLCite \textit{G. Zhang} and \textit{S. Chai}, Evol. Equ. Control Theory 13, No. 2, 316--328 (2024; Zbl 07846978) Full Text: DOI
Wang, Ruoyu P. T. Stabilisation of waves on product manifolds by boundary strips. (English) Zbl 1537.35083 Proc. Am. Math. Soc. 152, No. 6, 2423-2437 (2024). MSC: 35B40 35L05 35L20 35R01 47B44 PDFBibTeX XMLCite \textit{R. P. T. Wang}, Proc. Am. Math. Soc. 152, No. 6, 2423--2437 (2024; Zbl 1537.35083) Full Text: DOI arXiv
Ghisi, Marina; Gobbino, Massimo Global solutions to the Kirchhoff equation with spectral gap data in the energy space. (English) Zbl 1537.35248 NoDEA, Nonlinear Differ. Equ. Appl. 31, No. 4, Paper No. 48, 18 p. (2024). MSC: 35L90 35L20 35L72 35D30 PDFBibTeX XMLCite \textit{M. Ghisi} and \textit{M. Gobbino}, NoDEA, Nonlinear Differ. Equ. Appl. 31, No. 4, Paper No. 48, 18 p. (2024; Zbl 1537.35248) Full Text: DOI arXiv OA License
Kaltenbacher, Barbara; Meliani, Mostafa; Nikolić, Vanja The Kuznetsov and Blackstock equations of nonlinear acoustics with nonlocal-in-time dissipation. (English) Zbl 1537.35246 Appl. Math. Optim. 89, No. 3, Paper No. 63, 37 p. (2024). MSC: 35L72 35L20 35R11 PDFBibTeX XMLCite \textit{B. Kaltenbacher} et al., Appl. Math. Optim. 89, No. 3, Paper No. 63, 37 p. (2024; Zbl 1537.35246) Full Text: DOI arXiv OA License
Bortolan, Matheus C.; Caraballo, Tomás; Neto, Carlos Pecorari Generalized \(\varphi\)-pullback attractors for evolution processes and application to a nonautonomous wave equation. (English) Zbl 1537.35092 Appl. Math. Optim. 89, No. 3, Paper No. 62, 52 p. (2024). MSC: 35B41 35L20 35L71 35R09 37L25 PDFBibTeX XMLCite \textit{M. C. Bortolan} et al., Appl. Math. Optim. 89, No. 3, Paper No. 62, 52 p. (2024; Zbl 1537.35092) Full Text: DOI arXiv
Yuldashev, T. K.; Kilichev, O. Sh. Inverse problem for a hyperbolic integro-differential equation with two redefinition conditions at the end of the interval and involution. (English) Zbl 1537.35422 Azerb. J. Math. 14, No. 1, 3-22 (2024). MSC: 35R30 35A09 35C10 35L20 35R09 PDFBibTeX XMLCite \textit{T. K. Yuldashev} and \textit{O. Sh. Kilichev}, Azerb. J. Math. 14, No. 1, 3--22 (2024; Zbl 1537.35422) Full Text: Link
Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Gonzalez Martinez, Victor H.; Marchiori, Talita Druziani; Vicente, A. Stabilization of hyperbolic problems with localized damping in unbounded domains. (English) Zbl 1537.35061 J. Math. Anal. Appl. 537, No. 1, Article ID 128256, 20 p. (2024). MSC: 35B40 35L71 35L15 35L20 PDFBibTeX XMLCite \textit{M. M. Cavalcanti} et al., J. Math. Anal. Appl. 537, No. 1, Article ID 128256, 20 p. (2024; Zbl 1537.35061) Full Text: DOI
Dai, Wei The global behaviors for defocusing wave equations in two dimensional exterior region. (English) Zbl 07835529 Manuscr. Math. 174, No. 1-2, 59-71 (2024). Reviewer: Chengbo Wang (Hangzhou) MSC: 35B40 35L20 35L71 35B45 PDFBibTeX XMLCite \textit{W. Dai}, Manuscr. Math. 174, No. 1--2, 59--71 (2024; Zbl 07835529) Full Text: DOI arXiv
Zhu, Yongxing Quantized vortex dynamics of the nonlinear wave equation on the torus. (English) Zbl 1537.35034 Discrete Contin. Dyn. Syst., Ser. B 29, No. 6, 2480-2496 (2024). MSC: 35B25 35B40 35L05 35L20 35Q56 PDFBibTeX XMLCite \textit{Y. Zhu}, Discrete Contin. Dyn. Syst., Ser. B 29, No. 6, 2480--2496 (2024; Zbl 1537.35034) Full Text: DOI arXiv
Hao, Jianghao; Du, Fangqing Exponential decay for a time-varying coefficients wave equation with dynamic boundary conditions. (English) Zbl 1537.35068 J. Geom. Anal. 34, No. 5, Paper No. 151, 30 p. (2024). MSC: 35B40 35L20 74D05 93D15 PDFBibTeX XMLCite \textit{J. Hao} and \textit{F. Du}, J. Geom. Anal. 34, No. 5, Paper No. 151, 30 p. (2024; Zbl 1537.35068) Full Text: DOI
Lihiou, Houssem Coefficient inverse problem for anisotropic time-domain wave equation. (English) Zbl 1537.35416 Math. Control Relat. Fields 14, No. 1, 346-355 (2024). MSC: 35R30 35B40 35L20 93C05 PDFBibTeX XMLCite \textit{H. Lihiou}, Math. Control Relat. Fields 14, No. 1, 346--355 (2024; Zbl 1537.35416) Full Text: DOI
Zakharova, I. V. On some problems for partial differential equations with a small parameter in the principal part. (English. Russian original) Zbl 1537.35033 J. Math. Sci., New York 279, No. 5, 623-634 (2024); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 183, 61-72 (2020). MSC: 35B25 35J25 35L20 PDFBibTeX XMLCite \textit{I. V. Zakharova}, J. Math. Sci., New York 279, No. 5, 623--634 (2024; Zbl 1537.35033); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 183, 61--72 (2020) Full Text: DOI
Ouchenane, Djamel; Boulaaras, Salah; Choucha, Abdelbaki; Alnegga, Mohammad Blow-up and general decay of solutions for a Kirchhoff-type equation with distributed delay and variable-exponents. (English) Zbl 1536.35104 Quaest. Math. 47, No. 1, 43-60 (2024). MSC: 35B44 35L20 35L72 35R09 93D20 PDFBibTeX XMLCite \textit{D. Ouchenane} et al., Quaest. Math. 47, No. 1, 43--60 (2024; Zbl 1536.35104) Full Text: DOI
Faella, Luisa; Raj, Ritu; Sardar, Bidhan Chandra Optimal control problem governed by wave equation in an oscillating domain and homogenization. (English) Zbl 1536.35033 Z. Angew. Math. Phys. 75, No. 2, Paper No. 52, 22 p. (2024). MSC: 35B27 35B40 35L20 49J20 PDFBibTeX XMLCite \textit{L. Faella} et al., Z. Angew. Math. Phys. 75, No. 2, Paper No. 52, 22 p. (2024; Zbl 1536.35033) Full Text: DOI
Bonnet, Marc; Chaillat, Stéphanie; Nassor, Alice Solvability results for the transient acoustic scattering by an elastic obstacle. (English) Zbl 1536.35200 J. Math. Anal. Appl. 536, No. 1, Article ID 128198, 26 p. (2024). MSC: 35L20 35P25 PDFBibTeX XMLCite \textit{M. Bonnet} et al., J. Math. Anal. Appl. 536, No. 1, Article ID 128198, 26 p. (2024; Zbl 1536.35200) Full Text: DOI
Borikhanov, Meiirkhan B.; Torebek, Berikbol T. Behavior of solutions to semilinear evolution inequalities in an annulus: the critical cases. (English) Zbl 1537.35430 J. Math. Anal. Appl. 536, No. 1, Article ID 128172, 24 p. (2024). Reviewer: Marius Ghergu (Dublin) MSC: 35R45 35K20 35L20 PDFBibTeX XMLCite \textit{M. B. Borikhanov} and \textit{B. T. Torebek}, J. Math. Anal. Appl. 536, No. 1, Article ID 128172, 24 p. (2024; Zbl 1537.35430) Full Text: DOI arXiv
Gupta, Nishi; Maqbul, Md. Approximate solutions to hyperbolic partial differential equation with fractional differential and fractional integral forcing functions. (English) Zbl 1536.35355 Rend. Mat. Appl., VII. Ser. 45, No. 3, 201-227 (2024). MSC: 35R11 35A35 35B45 35D35 35L20 35L71 PDFBibTeX XMLCite \textit{N. Gupta} and \textit{Md. Maqbul}, Rend. Mat. Appl., VII. Ser. 45, No. 3, 201--227 (2024; Zbl 1536.35355) Full Text: Link
Iandoli, Felice; Ivanovici, Oana Dispersion for the wave equation outside a cylinder in \(\mathbb{R}^3\). (English) Zbl 1536.35111 J. Funct. Anal. 286, No. 9, Article ID 110377, 50 p. (2024). MSC: 35B45 35L20 PDFBibTeX XMLCite \textit{F. Iandoli} and \textit{O. Ivanovici}, J. Funct. Anal. 286, No. 9, Article ID 110377, 50 p. (2024; Zbl 1536.35111) Full Text: DOI
Chaoui, Abderrazak On the study of hyperbolic \(p(.)\)-bi-Laplace equation with variable exponent. (English) Zbl 1536.35217 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 31, No. 1, 45-57 (2024). MSC: 35L72 35L20 65M60 PDFBibTeX XMLCite \textit{A. Chaoui}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 31, No. 1, 45--57 (2024; Zbl 1536.35217) Full Text: Link Link
Benzahi, Mourad; Zaraï, Abderrahmane; Boulaaras, Salah; Jan, Rashid; Iqbal, Mujahid Blow up and lifespan of solutions for elastic membrane equation with delay. (English) Zbl 1536.35096 Results Appl. Math. 21, Article ID 100426, 8 p. (2024). MSC: 35B44 35L20 35L72 74K15 PDFBibTeX XMLCite \textit{M. Benzahi} et al., Results Appl. Math. 21, Article ID 100426, 8 p. (2024; Zbl 1536.35096) Full Text: DOI OA License
Simion Antunes, José G.; Cavalcanti, Marcelo M.; Cavalcanti, Valéria N. Domingos Uniform decay rate estimates for the 2D wave equation posed in an inhomogeneous medium with exponential growth source term, locally distributed nonlinear dissipation, and dynamic Cauchy-Ventcel-type boundary conditions. (English) Zbl 1536.35078 Math. Nachr. 297, No. 3, 962-997 (2024). MSC: 35B40 35A27 35L20 35L71 PDFBibTeX XMLCite \textit{J. G. Simion Antunes} et al., Math. Nachr. 297, No. 3, 962--997 (2024; Zbl 1536.35078) Full Text: DOI
Li, Xiaoyan; Ikehata, Ryo Energy decay for wave equations with a potential and a localized damping. (English) Zbl 1536.35072 NoDEA, Nonlinear Differ. Equ. Appl. 31, No. 2, Paper No. 25, 21 p. (2024). MSC: 35B40 35L20 PDFBibTeX XMLCite \textit{X. Li} and \textit{R. Ikehata}, NoDEA, Nonlinear Differ. Equ. Appl. 31, No. 2, Paper No. 25, 21 p. (2024; Zbl 1536.35072) Full Text: DOI arXiv
Monsurrò, S.; Nandakumaran, A. K.; Perugia, C. A note on the exact boundary controllability for an imperfect transmission problem. (English) Zbl 1536.35202 Ric. Mat. 73, No. 1, 547-564 (2024). MSC: 35L20 93B05 PDFBibTeX XMLCite \textit{S. Monsurrò} et al., Ric. Mat. 73, No. 1, 547--564 (2024; Zbl 1536.35202) Full Text: DOI OA License
Gonzalez Martinez, Victor Hugo; Marchiori, Talita Druziani; de Souza Franco, Alisson Younio Stabilization of a semilinear wave equation with delay. (English) Zbl 1536.35215 J. Dyn. Differ. Equations 36, No. 1, 161-208 (2024). MSC: 35L71 35B40 35L20 93B07 93C43 93D20 PDFBibTeX XMLCite \textit{V. H. Gonzalez Martinez} et al., J. Dyn. Differ. Equations 36, No. 1, 161--208 (2024; Zbl 1536.35215) Full Text: DOI
Ghisi, Marina; Gobbino, Massimo Almost global existence for Kirchhoff equations around global solutions. (English) Zbl 1535.35123 SIAM J. Math. Anal. 56, No. 2, 1936-1958 (2024). MSC: 35L90 35L20 35L72 PDFBibTeX XMLCite \textit{M. Ghisi} and \textit{M. Gobbino}, SIAM J. Math. Anal. 56, No. 2, 1936--1958 (2024; Zbl 1535.35123) Full Text: DOI arXiv
Dimova, M.; Kolkovska, N.; Kutev, N. Global behavior of the solutions to nonlinear wave equations with combined power-type nonlinearities with variable coefficients. (English) Zbl 1535.35121 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 242, Article ID 113504, 22 p. (2024). MSC: 35L71 35L20 35B44 PDFBibTeX XMLCite \textit{M. Dimova} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 242, Article ID 113504, 22 p. (2024; Zbl 1535.35121) Full Text: DOI arXiv OA License
Carreño-Bolaños, Rafael; Naumkin, Pavel I. Asymptotics of solutions to the periodic problem for the nonlinear damped wave equation with convective nonlinearity. (English) Zbl 1535.35120 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 242, Article ID 113503, 7 p. (2024). MSC: 35L71 35L20 35B40 PDFBibTeX XMLCite \textit{R. Carreño-Bolaños} and \textit{P. I. Naumkin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 242, Article ID 113503, 7 p. (2024; Zbl 1535.35120) Full Text: DOI
Burq, Nicolas; Dehman, Belhassen; Le Rousseau, Jérôme Semi-classical observation suffices for observability: wave and Schrödinger equations. (English) Zbl 1534.35263 ESAIM, Control Optim. Calc. Var. 30, Paper No. 10, 31 p. (2024). MSC: 35L20 35L05 35Q41 93B07 PDFBibTeX XMLCite \textit{N. Burq} et al., ESAIM, Control Optim. Calc. Var. 30, Paper No. 10, 31 p. (2024; Zbl 1534.35263) Full Text: DOI arXiv HAL OA License
Han, Jiangbo; Wang, Keyan; Xu, Runzhang; Yang, Chao Global quantitative stability of wave equations with strong and weak dampings. (English) Zbl 1534.35028 J. Differ. Equations 390, 228-344 (2024). MSC: 35B40 35B30 35L20 35L71 PDFBibTeX XMLCite \textit{J. Han} et al., J. Differ. Equations 390, 228--344 (2024; Zbl 1534.35028) Full Text: DOI
Jia, Zekui; Li, Maokun; Yang, Fan; Xu, Shenheng Estimation of the Born data in inverse scattering of layered media. (English) Zbl 07813319 Inverse Probl. 40, No. 4, Article ID 045005, 19 p. (2024). Reviewer: Fangfang Dou (Chengdu) MSC: 35R30 35L20 PDFBibTeX XMLCite \textit{Z. Jia} et al., Inverse Probl. 40, No. 4, Article ID 045005, 19 p. (2024; Zbl 07813319) Full Text: DOI
Ball, John M. Remarks on the linear wave equation. (English) Zbl 1534.35258 Q. Appl. Math. 82, No. 2, 431-448 (2024). MSC: 35L05 35L20 47D06 42B37 PDFBibTeX XMLCite \textit{J. M. Ball}, Q. Appl. Math. 82, No. 2, 431--448 (2024; Zbl 1534.35258) Full Text: DOI arXiv
Cornilleau, Pierre; Robbiano, Luc Exponential stabilization of waves for the Zaremba boundary condition. (English) Zbl 1534.35264 Pure Appl. Anal. 6, No. 1, 1-71 (2024). MSC: 35L20 35B35 35B40 47D06 PDFBibTeX XMLCite \textit{P. Cornilleau} and \textit{L. Robbiano}, Pure Appl. Anal. 6, No. 1, 1--71 (2024; Zbl 1534.35264) Full Text: DOI arXiv
Lin, Qiang; Pang, Yue; Wang, Xingchang; Xu, Zhengsheng Global well-posedness of solutions for 2-D Klein-Gordon equations with exponential nonlinearity. (English) Zbl 1533.35210 J. Math. Phys. 65, No. 2, Article ID 021501, 15 p. (2024). MSC: 35L70 35B44 35B40 35L20 35L71 PDFBibTeX XMLCite \textit{Q. Lin} et al., J. Math. Phys. 65, No. 2, Article ID 021501, 15 p. (2024; Zbl 1533.35210) Full Text: DOI
Lin, Yi-Hsuan; Liu, Hongyu; Liu, Xu Determining a nonlinear hyperbolic system with unknown sources and nonlinearity. (English) Zbl 1534.35447 J. Lond. Math. Soc., II. Ser. 109, No. 2, Article ID e12865, 39 p. (2024). MSC: 35R30 35L20 35L71 78A05 PDFBibTeX XMLCite \textit{Y.-H. Lin} et al., J. Lond. Math. Soc., II. Ser. 109, No. 2, Article ID e12865, 39 p. (2024; Zbl 1534.35447) Full Text: DOI arXiv
Pozzoli, Eugenio Small-time global approximate controllability of bilinear wave equations. (English) Zbl 1534.35269 J. Differ. Equations 388, 421-438 (2024). Reviewer: Kaïs Ammari (Monastir) MSC: 35L71 35L20 93C10 93C20 93B05 93B27 PDFBibTeX XMLCite \textit{E. Pozzoli}, J. Differ. Equations 388, 421--438 (2024; Zbl 1534.35269) Full Text: DOI arXiv OA License
Xiong, Yangmin; Sun, Chunyou Kolmogorov \(\varepsilon\)-entropy of the uniform attractor for a wave equation. (English) Zbl 1533.35036 J. Differ. Equations 387, 532-554 (2024). MSC: 35B41 35B45 35L20 35L71 47B06 PDFBibTeX XMLCite \textit{Y. Xiong} and \textit{C. Sun}, J. Differ. Equations 387, 532--554 (2024; Zbl 1533.35036) Full Text: DOI arXiv
Jiménez-Casas, Ángela; Rodríguez-Bernal, Aníbal A nonlinear damped transmission problem as limit of wave equations with concentrating nonlinear terms away from the boundary. (English) Zbl 1532.35290 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 241, Article ID 113492, 23 p. (2024). MSC: 35L20 35L71 35L81 35B25 PDFBibTeX XMLCite \textit{Á. Jiménez-Casas} and \textit{A. Rodríguez-Bernal}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 241, Article ID 113492, 23 p. (2024; Zbl 1532.35290) Full Text: DOI
Li, Fang; Li, Xiaolei An effect of decay rates: supercritical damping and a viscoelastic term. (English) Zbl 1532.35065 Evol. Equ. Control Theory 13, No. 1, 116-127 (2024). MSC: 35B40 35L20 35L71 35R09 PDFBibTeX XMLCite \textit{F. Li} and \textit{X. Li}, Evol. Equ. Control Theory 13, No. 1, 116--127 (2024; Zbl 1532.35065) Full Text: DOI
Ge, Hui; Zhang, Zhifei Stability of wave equation with variable coefficients by boundary fractional dissipation law. (English) Zbl 1531.35063 Result. Math. 79, No. 2, Paper No. 64, 21 p. (2024). MSC: 35B40 35L20 PDFBibTeX XMLCite \textit{H. Ge} and \textit{Z. Zhang}, Result. Math. 79, No. 2, Paper No. 64, 21 p. (2024; Zbl 1531.35063) Full Text: DOI
Borikhanov, Meiirkhan B.; Torebek, Berikbol T. On inhomogeneous exterior Robin problems with critical nonlinearities. (English) Zbl 1533.35170 J. Differ. Equations 380, 1-23 (2024). MSC: 35J91 35J05 35K20 35L20 35A01 PDFBibTeX XMLCite \textit{M. B. Borikhanov} and \textit{B. T. Torebek}, J. Differ. Equations 380, 1--23 (2024; Zbl 1533.35170) Full Text: DOI arXiv
Hung D. Nguyen Polynomial mixing of a stochastic wave equation with dissipative damping. (English) Zbl 1531.35406 Appl. Math. Optim. 89, No. 1, Paper No. 21, 31 p. (2024). MSC: 35R60 35B40 35L20 35L71 PDFBibTeX XMLCite \textit{Hung D. Nguyen}, Appl. Math. Optim. 89, No. 1, Paper No. 21, 31 p. (2024; Zbl 1531.35406) Full Text: DOI arXiv
Li, Sheng-Jie; Chai, Shugen Stabilization of the viscoelastic wave equation with variable coefficients and a delay term in nonlocal boundary feedback. (English) Zbl 1536.35071 J. Dyn. Control Syst. 30, No. 1, Paper No. 1, 24 p. (2024). Reviewer: Jin Liang (Shanghai) MSC: 35B40 35L20 35R09 93D15 PDFBibTeX XMLCite \textit{S.-J. Li} and \textit{S. Chai}, J. Dyn. Control Syst. 30, No. 1, Paper No. 1, 24 p. (2024; Zbl 1536.35071) Full Text: DOI
Li, Yu; Li, Boxiao High-order exponential integrators for the Riesz space-fractional telegraph equation. (English) Zbl 1530.65088 Commun. Nonlinear Sci. Numer. Simul. 128, Article ID 107607, 16 p. (2024). MSC: 65M06 35L20 35R11 65L06 PDFBibTeX XMLCite \textit{Y. Li} and \textit{B. Li}, Commun. Nonlinear Sci. Numer. Simul. 128, Article ID 107607, 16 p. (2024; Zbl 1530.65088) Full Text: DOI
Ghenimi, Seyf Eddine; Sengouga, Abdelmouhcene Boundary stabilization of a vibrating string with variable length. (English) Zbl 1530.35140 J. Math. Anal. Appl. 532, No. 1, Article ID 127910, 22 p. (2024). MSC: 35L20 35R37 74K05 74H45 93D15 PDFBibTeX XMLCite \textit{S. E. Ghenimi} and \textit{A. Sengouga}, J. Math. Anal. Appl. 532, No. 1, Article ID 127910, 22 p. (2024; Zbl 1530.35140) Full Text: DOI arXiv
Cordeiro, Sebastião; Raposo, Carlos; Ferreira, Jorge; Rocha, Daniel; Shahrouzi, Mohammad Local existence for a viscoelastic Kirchhoff type equation with the dispersive term, internal damping, and logarithmic nonlinearity. (English) Zbl 1527.35006 Opusc. Math. 44, No. 1, 19-47 (2024). MSC: 35A01 35L20 35L72 35R09 PDFBibTeX XMLCite \textit{S. Cordeiro} et al., Opusc. Math. 44, No. 1, 19--47 (2024; Zbl 1527.35006) Full Text: DOI
Loreti, Paola; Sforza, Daniela; Yamamoto, M. Uniqueness of solution with zero boundary condition for time-fractional wave equations. (English) Zbl 1527.35473 Appl. Math. Lett. 148, Article ID 108862, 6 p. (2024). Reviewer: Abdallah Bradji (Annaba) MSC: 35R11 35A02 35L20 PDFBibTeX XMLCite \textit{P. Loreti} et al., Appl. Math. Lett. 148, Article ID 108862, 6 p. (2024; Zbl 1527.35473) Full Text: DOI
Burq, Nicolas; Dehman, Belhassen; Rousseau, Jérôme Le Measure and continuous vector field at a boundary I: propagation equations and wave observability. arXiv:2407.02255 Preprint, arXiv:2407.02255 [math.AP] (2024). MSC: 35L05 35L20 35Q49 35R05 93B07 34A99 35S05 BibTeX Cite \textit{N. Burq} et al., ``Measure and continuous vector field at a boundary I: propagation equations and wave observability'', Preprint, arXiv:2407.02255 [math.AP] (2024) Full Text: arXiv OA License
Xu, Guixiang; Yang, Pengxuan Global well-posedness of the defocusing, cubic nonlinear wave equation outside of the ball with radial data. arXiv:2406.05614 Preprint, arXiv:2406.05614 [math.AP] (2024). MSC: 35L05 35E05 35L20 BibTeX Cite \textit{G. Xu} and \textit{P. Yang}, ``Global well-posedness of the defocusing, cubic nonlinear wave equation outside of the ball with radial data'', Preprint, arXiv:2406.05614 [math.AP] (2024) Full Text: arXiv OA License
Bortolan, Matheus C.; Caraballo, Tomas; Neto, Carlos Pecorari Generalized exponential pullback attractor for a nonautonomous wave equation. arXiv:2401.06631 Preprint, arXiv:2401.06631 [math.DS] (2024). MSC: 35B41 35L20 37L25 BibTeX Cite \textit{M. C. Bortolan} et al., ``Generalized exponential pullback attractor for a nonautonomous wave equation'', Preprint, arXiv:2401.06631 [math.DS] (2024) Full Text: arXiv OA License
Choucha, Abdelbaki; Ouchenane, Djamel Exponential growth of solutions with \(L_p\)-norm of a nonlinear viscoelastic wave equation with strong damping and source and delay terms. (English) Zbl 07897335 Stud. Univ. Babeș-Bolyai, Math. 68, No. 2, 375-385 (2023). MSC: 35L05 35L20 58G16 93D20 PDFBibTeX XMLCite \textit{A. Choucha} and \textit{D. Ouchenane}, Stud. Univ. Babeș-Bolyai, Math. 68, No. 2, 375--385 (2023; Zbl 07897335) Full Text: DOI
Romanov, V. G.; Bugueva, T. V. The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation. (Russian. English summary) Zbl 07868520 Sib. Zh. Ind. Mat. 26, No. 2, 113-129 (2023); translation in J. Appl. Ind. Math. 17, No. 2, 370-384 (2023). MSC: 35R30 35L20 35L71 PDFBibTeX XMLCite \textit{V. G. Romanov} and \textit{T. V. Bugueva}, Sib. Zh. Ind. Mat. 26, No. 2, 113--129 (2023; Zbl 07868520); translation in J. Appl. Ind. Math. 17, No. 2, 370--384 (2023) Full Text: DOI MNR
Kalyakin, Leonid Anatol’evich Perturbation of a simple wave: from simulation to asymptotics. (Russian. English summary) Zbl 07863362 Ufim. Mat. Zh. 15, No. 3, 55-70 (2023); translation in Ufa Math. J. 15, No. 3, 54-68 (2023). MSC: 35C07 35Q60 35L20 35A18 76W05 35L70 PDFBibTeX XMLCite \textit{L. A. Kalyakin}, Ufim. Mat. Zh. 15, No. 3, 55--70 (2023; Zbl 07863362); translation in Ufa Math. J. 15, No. 3, 54--68 (2023) Full Text: DOI MNR
Zhang, Xu; Jiang, Nan; Yang, Qigui; Chen, Guanrong Li-Yorke chaos of linear differential equations in a finite-dimensional space with a weak topology. (English) Zbl 07860420 Chaos 33, No. 8, Article ID 081104, 7 p. (2023). MSC: 47A16 37D45 35L20 PDFBibTeX XMLCite \textit{X. Zhang} et al., Chaos 33, No. 8, Article ID 081104, 7 p. (2023; Zbl 07860420) Full Text: DOI
Kubo, Akisato; Hoshino, Hiroki Non-linear evolution equations with non-local coefficients and zero-Neumann condition: one dimensional case. (English) Zbl 07859846 Kähler, Uwe (ed.) et al., Analysis, applications, and computations. Proceedings of the 13th ISAAC congress, Ghent, Belgium, August 2–6, 2021. Cham: Birkhäuser. Trends Math., 647-658 (2023). MSC: 35L71 35B40 35L20 35R09 PDFBibTeX XMLCite \textit{A. Kubo} and \textit{H. Hoshino}, in: Analysis, applications, and computations. Proceedings of the 13th ISAAC congress, Ghent, Belgium, August 2--6, 2021. Cham: Birkhäuser. 647--658 (2023; Zbl 07859846) Full Text: DOI
Pham Trieu Duong The asymptotic estimates of the solutions to the linear damping models with spatial dependent coefficients. (English) Zbl 07859842 Kähler, Uwe (ed.) et al., Analysis, applications, and computations. Proceedings of the 13th ISAAC congress, Ghent, Belgium, August 2–6, 2021. Cham: Birkhäuser. Trends Math., 591-602 (2023). MSC: 35R11 35B40 35L15 35L20 PDFBibTeX XMLCite \textit{Pham Trieu Duong}, in: Analysis, applications, and computations. Proceedings of the 13th ISAAC congress, Ghent, Belgium, August 2--6, 2021. Cham: Birkhäuser. 591--602 (2023; Zbl 07859842) Full Text: DOI
Holzegel, Gustav; Kauffman, Christopher The wave equation on the Schwarzschild spacetime with small non-decaying first-order terms. (English) Zbl 07858537 J. Hyperbolic Differ. Equ. 20, No. 4, 825-834 (2023). MSC: 35B40 35L20 35R01 83C57 PDFBibTeX XMLCite \textit{G. Holzegel} and \textit{C. Kauffman}, J. Hyperbolic Differ. Equ. 20, No. 4, 825--834 (2023; Zbl 07858537) Full Text: DOI arXiv