Sankeshwari, Sagar; Kulkarni, Vinayak Solutions of hyperbolic system of time fractional partial differential equations for heat propagation. (English) Zbl 07907433 Appl. Appl. Math. 19, No. 1, Paper No. 12, 20 p. (2024). MSC: 26A33 35L35 44A10 65R10 74F05 PDFBibTeX XMLCite \textit{S. Sankeshwari} and \textit{V. Kulkarni}, Appl. Appl. Math. 19, No. 1, Paper No. 12, 20 p. (2024; Zbl 07907433) Full Text: Link
Liu, Bingchen; Liu, Mengyao Critical blow-up exponent for a doubly dispersive quasilinear wave equation. (English) Zbl 07905876 Z. Angew. Math. Phys. 75, No. 4, Paper No. 151, 18 p. (2024). MSC: 35B44 35B33 35D30 35L35 35L77 PDFBibTeX XMLCite \textit{B. Liu} and \textit{M. Liu}, Z. Angew. Math. Phys. 75, No. 4, Paper No. 151, 18 p. (2024; Zbl 07905876) Full Text: DOI
Lu, Xiaojun Energy behavior for Sobolev solutions to viscoelastic damped wave models with time-dependent oscillating coefficient. (English) Zbl 07903090 Math. Nachr. 297, No. 7, 2445-2467 (2024). MSC: 35B40 35L35 PDFBibTeX XMLCite \textit{X. Lu}, Math. Nachr. 297, No. 7, 2445--2467 (2024; Zbl 07903090) Full Text: DOI
Li, Fang; You, Bo Global attractor of the Euler-Bernoulli equations with a localized nonlinear damping. (English) Zbl 07896604 Discrete Contin. Dyn. Syst. 44, No. 9, 2641-2659 (2024). MSC: 35B41 37L30 35L35 35L76 35R09 PDFBibTeX XMLCite \textit{F. Li} and \textit{B. You}, Discrete Contin. Dyn. Syst. 44, No. 9, 2641--2659 (2024; Zbl 07896604) Full Text: DOI
Loreti, Paola; Sforza, Daniela Foundation of the time-fractional beam equation. (English) Zbl 07888247 Appl. Math. Lett. 156, Article ID 109147, 4 p. (2024). MSC: 35R11 35L35 74K10 PDFBibTeX XMLCite \textit{P. Loreti} and \textit{D. Sforza}, Appl. Math. Lett. 156, Article ID 109147, 4 p. (2024; Zbl 07888247) Full Text: DOI
Sabbagh, Zineb; Khemmoudj, Ammar; Abdelli, Mama Well-posedness and stability for a viscoelastic Petrovsky equation with a localized nonlinear damping. (English) Zbl 07884897 S\(\vec{\text{e}}\)MA J. 81, No. 2, 307-328 (2024). MSC: 47D03 74D05 35B40 35D30 93D15 93D05 35L35 35B35 PDFBibTeX XMLCite \textit{Z. Sabbagh} et al., S\(\vec{\text{e}}\)MA J. 81, No. 2, 307--328 (2024; Zbl 07884897) Full Text: DOI
Ye, Yaojun Lower bounds for the blow-up time in a higher-order nonlinear Kirchhoff-type equation. (English) Zbl 07878692 J. Math. Inequal. 18, No. 1, 69-77 (2024). MSC: 35B44 35L35 35L77 35R09 PDFBibTeX XMLCite \textit{Y. Ye}, J. Math. Inequal. 18, No. 1, 69--77 (2024; Zbl 07878692) Full Text: DOI OA License
Li, Donghao; Zhang, Hongwei; Hu, Qingiyng Blow-up of solutions to a viscoelastic Euler-Bernoulli equation with nonlocal dissipation. (English) Zbl 07875572 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 31, No. 2, 103-120 (2024). MSC: 35B44 35L35 35L76 35R09 PDFBibTeX XMLCite \textit{D. Li} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 31, No. 2, 103--120 (2024; Zbl 07875572) Full Text: Link
Wang, Yongda; Zhang, Jian Some results for a von Kármán equation with variable exponent modeling suspension bridges. (English) Zbl 07872556 Bull. Iran. Math. Soc. 50, No. 3, Paper No. 37, 24 p. (2024). MSC: 35L35 35A02 35B40 35B44 35R35 35L76 PDFBibTeX XMLCite \textit{Y. Wang} and \textit{J. Zhang}, Bull. Iran. Math. Soc. 50, No. 3, Paper No. 37, 24 p. (2024; Zbl 07872556) Full Text: DOI
Camasta, Alessandro; Fragnelli, Genni New results on controllability and stability for degenerate Euler-Bernoulli type equations. (English) Zbl 07868737 Discrete Contin. Dyn. Syst. 44, No. 8, 2193-2231 (2024). MSC: 35B40 35L35 35L80 93B05 93B07 93D23 93D15 PDFBibTeX XMLCite \textit{A. Camasta} and \textit{G. Fragnelli}, Discrete Contin. Dyn. Syst. 44, No. 8, 2193--2231 (2024; Zbl 07868737) Full Text: DOI arXiv
Ferreira, Jorge; Pişkin, Erhan; Shahrouzi, Mohammad General decay and blow up of solutions for a plate viscoelastic \(p(x)\)-Kirchhoff type equation with variable exponent nonlinearities and boundary feedback. (English) Zbl 07868211 Quaest. Math. 47, No. 4, 813-830 (2024). MSC: 35B40 35B44 35L35 35L76 35R09 74K20 PDFBibTeX XMLCite \textit{J. Ferreira} et al., Quaest. Math. 47, No. 4, 813--830 (2024; Zbl 07868211) Full Text: DOI
Romanenkov, Aleksandr Mikhaĭlovich On the solution of a mixed problem for the equation of vibrations of a moving viscoelastic web. (Russian. English summary) Zbl 07864601 Vestn. Ross. Univ., Mat. 29, No. 145, 86-97 (2024). MSC: 35G16 35C10 35L35 35Q74 PDFBibTeX XMLCite \textit{A. M. Romanenkov}, Vestn. Ross. Univ., Mat. 29, No. 145, 86--97 (2024; Zbl 07864601) Full Text: DOI MNR
Bentrcia, Toufik; Mennouni, Abdelaziz On the energy decay of a nonlinear time-fractional Euler-Bernoulli beam problem including time-delay: theoretical treatment and numerical solution techniques. (English) Zbl 07860999 J. Eng. Math. 145, Paper No. 21, 36 p. (2024). MSC: 35R11 35B40 35L35 35L71 65N12 68T07 PDFBibTeX XMLCite \textit{T. Bentrcia} and \textit{A. Mennouni}, J. Eng. Math. 145, Paper No. 21, 36 p. (2024; Zbl 07860999) Full Text: DOI
Wang, Xingchang; Xu, Runzhang; Yang, Yanbing Long-time behavior for fourth order nonlinear wave equations with dissipative and dispersive terms. (English) Zbl 07856334 Appl. Numer. Math. 199, 248-265 (2024). MSC: 35B40 35B41 35L35 35L76 PDFBibTeX XMLCite \textit{X. Wang} et al., Appl. Numer. Math. 199, 248--265 (2024; Zbl 07856334) Full Text: DOI
Vu, Ngo Tran; Dung, Dao Bao; Freitas, Mirelson M. Potential well method for a class of fourth order wave equations with Newtonian potential. (English) Zbl 07856215 Discrete Contin. Dyn. Syst., Ser. S 17, No. 3, 1161-1177 (2024). MSC: 35L35 35B35 35B40 35B44 PDFBibTeX XMLCite \textit{N. T. Vu} et al., Discrete Contin. Dyn. Syst., Ser. S 17, No. 3, 1161--1177 (2024; Zbl 07856215) Full Text: DOI
Garti, Ines; Berbiche, Mohamed On the Cauchy problem for the generalized double dispersion equation with logarithmic nonlinearity. (English) Zbl 1539.35143 Analysis, München 44, No. 2, 121-145 (2024). MSC: 35L35 35L76 35Q30 76B15 PDFBibTeX XMLCite \textit{I. Garti} and \textit{M. Berbiche}, Analysis, München 44, No. 2, 121--145 (2024; Zbl 1539.35143) Full Text: DOI
Minh, Tran Quang; Pham, Hong-Danh; Freitas, Mirelson M. A class of fourth-order dispersive wave equations with exponential source. (English) Zbl 1539.35144 Calc. Var. Partial Differ. Equ. 63, No. 5, Paper No. 127, 31 p. (2024). MSC: 35L35 35B38 35B40 35B44 35L76 PDFBibTeX XMLCite \textit{T. Q. Minh} et al., Calc. Var. Partial Differ. Equ. 63, No. 5, Paper No. 127, 31 p. (2024; Zbl 1539.35144) Full Text: DOI
Hajjej, Zayd Exponential stability of extensible beams equation with Balakrishnan-Taylor, strong and localized nonlinear damping. (English) Zbl 1537.35066 Semigroup Forum 108, No. 2, 391-412 (2024). MSC: 35B40 35L35 35L77 74K10 PDFBibTeX XMLCite \textit{Z. Hajjej}, Semigroup Forum 108, No. 2, 391--412 (2024; Zbl 1537.35066) Full Text: DOI
Li, Yanan; Narciso, Vando; Sun, Yue Attractors and asymptotic behavior for an energy-damped extensible beam model. (English) Zbl 1537.35097 Z. Angew. Math. Phys. 75, No. 3, Paper No. 92, 28 p. (2024). MSC: 35B41 35L35 35L76 74K10 PDFBibTeX XMLCite \textit{Y. Li} et al., Z. Angew. Math. Phys. 75, No. 3, Paper No. 92, 28 p. (2024; Zbl 1537.35097) Full Text: DOI
Zhao, Chun Xiang; Meng, Feng Juan Attractor for the extensible beam equation with nonlocal weak damping on time-dependent space. (English) Zbl 1537.35101 Acta Math. Sin., Engl. Ser. 40, No. 4, 1115-1126 (2024). MSC: 35B41 35L35 35L76 37B55 74K10 PDFBibTeX XMLCite \textit{C. X. Zhao} and \textit{F. J. Meng}, Acta Math. Sin., Engl. Ser. 40, No. 4, 1115--1126 (2024; Zbl 1537.35101) Full Text: DOI
Lasiecka, Irena; Tebou, Louis Gevrey regularity of the semigroup corresponding to an Euler-Bernoulli plate equation with localized structural damping. (English) Zbl 1537.35128 Discrete Contin. Dyn. Syst. 44, No. 6, 1647-1666 (2024). MSC: 35B65 35B40 35L35 47D06 74K20 PDFBibTeX XMLCite \textit{I. Lasiecka} and \textit{L. Tebou}, Discrete Contin. Dyn. Syst. 44, No. 6, 1647--1666 (2024; Zbl 1537.35128) Full Text: DOI
Nascimento, Marcelo; Pelicer, Maurício; Picolli, Iago Long-time behavior for fractional wave equations governed by bi-harmonic operator. (English) Zbl 1537.35098 Discrete Contin. Dyn. Syst., Ser. B 29, No. 6, 2749-2768 (2024). MSC: 35B41 35L35 35L71 35R11 37L65 PDFBibTeX XMLCite \textit{M. Nascimento} et al., Discrete Contin. Dyn. Syst., Ser. B 29, No. 6, 2749--2768 (2024; Zbl 1537.35098) Full Text: DOI
Mondal, Subhankar; Nair, M. Thamban A source identification problem in a bi-parabolic equation: convergence rates and some optimal results. (English) Zbl 1536.35379 Numer. Funct. Anal. Optim. 45, No. 3, 189-215 (2024). MSC: 35R30 35L35 47A52 65M30 41A25 PDFBibTeX XMLCite \textit{S. Mondal} and \textit{M. T. Nair}, Numer. Funct. Anal. Optim. 45, No. 3, 189--215 (2024; Zbl 1536.35379) Full Text: DOI arXiv
Wang, Lulu; Ma, Qiaozhen Uniform attractors of non-autonomous suspension bridge equations with memory. (English) Zbl 1536.35092 Electron. J. Differ. Equ. 2024, Paper No. 16, 16 p. (2024). MSC: 35B41 35L35 35L76 35R09 37B55 37L30 PDFBibTeX XMLCite \textit{L. Wang} and \textit{Q. Ma}, Electron. J. Differ. Equ. 2024, Paper No. 16, 16 p. (2024; Zbl 1536.35092) Full Text: Link
Chentouf, Boumediène; Smaoui, Nejib Exponential stabilization of a flexible structure: a delayed boundary force control versus a delayed boundary moment control. (English) Zbl 1536.35205 Qual. Theory Dyn. Syst. 23, No. 3, Paper No. 112, 29 p. (2024). MSC: 35L35 93D15 PDFBibTeX XMLCite \textit{B. Chentouf} and \textit{N. Smaoui}, Qual. Theory Dyn. Syst. 23, No. 3, Paper No. 112, 29 p. (2024; Zbl 1536.35205) Full Text: DOI
Lekdim, Billal; Khemmoudj, Ammar Existence and general decay of solution for nonlinear viscoelastic two-dimensional beam with a nonlinear delay. (English) Zbl 1536.35068 Ric. Mat. 73, No. 1, 261-282 (2024). MSC: 35B40 35L35 35L76 74H45 74K10 PDFBibTeX XMLCite \textit{B. Lekdim} and \textit{A. Khemmoudj}, Ric. Mat. 73, No. 1, 261--282 (2024; Zbl 1536.35068) Full Text: DOI
Shao, Xiang-kun; Huang, Nan-jing; O’Regan, Donal Infinite time blow-up of solutions for a plate equation with weak damping and logarithmic nonlinearity. (English) Zbl 1534.35043 J. Math. Anal. Appl. 535, No. 2, Article ID 128144, 17 p. (2024). MSC: 35B44 35L35 35L76 74K20 PDFBibTeX XMLCite \textit{X.-k. Shao} et al., J. Math. Anal. Appl. 535, No. 2, Article ID 128144, 17 p. (2024; Zbl 1534.35043) Full Text: DOI
Di, Huafei; Qiu, Yi; Peng, Xiaoming Blow-up phenomena for a singular nonlocal viscoelastic problem with logarithmic nonlinearity. (English) Zbl 1533.35038 Appl. Math. Lett. 150, Article ID 108954, 6 p. (2024). MSC: 35B44 35L35 35L76 PDFBibTeX XMLCite \textit{H. Di} et al., Appl. Math. Lett. 150, Article ID 108954, 6 p. (2024; Zbl 1533.35038) Full Text: DOI
Camasta, Alessandro; Fragnelli, Genni A stability result for a degenerate beam equation. (English) Zbl 1533.35027 SIAM J. Control Optim. 62, No. 1, 630-649 (2024). MSC: 35B40 35L35 35L80 93D23 93D15 PDFBibTeX XMLCite \textit{A. Camasta} and \textit{G. Fragnelli}, SIAM J. Control Optim. 62, No. 1, 630--649 (2024; Zbl 1533.35027) Full Text: DOI arXiv
Di, Huafei; Qiu, Yi Well-posedness, asymptotic stability and blow-up results for a nonlocal singular viscoelastic problem with logarithmic nonlinearity. (English) Zbl 1532.35049 Z. Angew. Math. Phys. 75, No. 2, Paper No. 34, 33 p. (2024). MSC: 35B40 35B44 35L35 35L71 49K40 PDFBibTeX XMLCite \textit{H. Di} and \textit{Y. Qiu}, Z. Angew. Math. Phys. 75, No. 2, Paper No. 34, 33 p. (2024; Zbl 1532.35049) Full Text: DOI
Kumarasamy, Sakthivel; Hasanov, Alemdar; Dileep, Anjuna Inverse problems of identifying the unknown transverse shear force in the Euler-Bernoulli beam with Kelvin-Voigt damping. (English) Zbl 1532.35531 J. Inverse Ill-Posed Probl. 32, No. 1, 75-106 (2024). MSC: 35R30 35A01 35L35 49J20 PDFBibTeX XMLCite \textit{S. Kumarasamy} et al., J. Inverse Ill-Posed Probl. 32, No. 1, 75--106 (2024; Zbl 1532.35531) Full Text: DOI arXiv
Raposo, Carlos; Martins, Roseane; Ribeiro, Joilson; Vera, Octavio Exponential stability of the von Kármán system with internal damping. (English) Zbl 1532.35073 Georgian Math. J. 31, No. 1, 111-119 (2024). MSC: 35B40 35L35 35L76 74K20 PDFBibTeX XMLCite \textit{C. Raposo} et al., Georgian Math. J. 31, No. 1, 111--119 (2024; Zbl 1532.35073) Full Text: DOI
Kiguradze, Tariel; Alhuzally, Reemah On a two-dimensional Dirichlet type problem for a linear hyperbolic equation of fourth order. (English) Zbl 1532.35294 Georgian Math. J. 31, No. 1, 79-97 (2024). MSC: 35L35 35B45 34B08 PDFBibTeX XMLCite \textit{T. Kiguradze} and \textit{R. Alhuzally}, Georgian Math. J. 31, No. 1, 79--97 (2024; Zbl 1532.35294) Full Text: DOI
Liu, Zhiming; Yang, Zhijian; Guo, Yuanyuan Stability of strong attractors for the extensible beam equation with gentle dissipation. (English) Zbl 1532.35083 J. Math. Anal. Appl. 533, No. 2, Article ID 127999, 27 p. (2024). MSC: 35B41 35L35 35L72 35R09 74K10 PDFBibTeX XMLCite \textit{Z. Liu} et al., J. Math. Anal. Appl. 533, No. 2, Article ID 127999, 27 p. (2024; Zbl 1532.35083) Full Text: DOI
Pereira, Ducival C.; Raposo, Carlos A.; Maranhão, Celsa H. M.; Cattai, Adriano P. Global existence and uniform decay of solutions for a Kirchhoff beam equation with nonlinear damping and source term. (English) Zbl 1532.35070 Differ. Equ. Dyn. Syst. 32, No. 1, 101-114 (2024). MSC: 35B40 35L35 35L76 74K10 PDFBibTeX XMLCite \textit{D. C. Pereira} et al., Differ. Equ. Dyn. Syst. 32, No. 1, 101--114 (2024; Zbl 1532.35070) Full Text: DOI
Bezerra, Flank D. M.; Liu, Linfang; Narciso, Vando Dynamics for a class of energy beam models with non-constant material density. (English) Zbl 1531.35079 Z. Angew. Math. Phys. 75, No. 1, Paper No. 8, 27 p. (2024). MSC: 35B41 35L35 35L76 35Q74 PDFBibTeX XMLCite \textit{F. D. M. Bezerra} et al., Z. Angew. Math. Phys. 75, No. 1, Paper No. 8, 27 p. (2024; Zbl 1531.35079) Full Text: DOI
Gimperlein, Heiko; He, Runan; Lacey, Andrew A. Wellposedness of a nonlinear parabolic-dispersive coupled system modelling MEMS. (English) Zbl 1534.35246 J. Differ. Equations 384, 193-251 (2024). Reviewer: Philippe Laurençot (Chambéry) MSC: 35K59 35G61 35Q74 74F10 35K20 35L35 PDFBibTeX XMLCite \textit{H. Gimperlein} et al., J. Differ. Equations 384, 193--251 (2024; Zbl 1534.35246) Full Text: DOI arXiv
Aouadi, Moncef Continuity properties of pullback and pullback exponential attractors for non-autonomous plate with \(p\)-Laplacian. (English) Zbl 1534.35037 Appl. Math. Optim. 89, No. 1, Paper No. 10, 41 p. (2024). Reviewer: Joseph Shomberg (Providence) MSC: 35B41 35B40 35L35 35L76 37L05 37G35 74K20 PDFBibTeX XMLCite \textit{M. Aouadi}, Appl. Math. Optim. 89, No. 1, Paper No. 10, 41 p. (2024; Zbl 1534.35037) Full Text: DOI
Şen, Zehra; Khanmamedov, Azer The Cahn-Hilliard/Allen-Cahn equation with inertial and proliferation terms. (English) Zbl 1527.35082 J. Math. Anal. Appl. 530, No. 2, Article ID 127736, 20 p. (2024). MSC: 35B40 35B25 35L35 35L71 PDFBibTeX XMLCite \textit{Z. Şen} and \textit{A. Khanmamedov}, J. Math. Anal. Appl. 530, No. 2, Article ID 127736, 20 p. (2024; Zbl 1527.35082) Full Text: DOI
Yılmaz, Nebi; Pişkin, Erhan; Çelik, Ercan Well-posedness and blow-up of solutions for a variable exponent nonlinear Petrovsky equation. (English) Zbl 07901640 Adv. Math. Phys. 2023, Article ID 8866861, 13 p. (2023). MSC: 35B44 35L35 35L76 PDFBibTeX XMLCite \textit{N. Yılmaz} et al., Adv. Math. Phys. 2023, Article ID 8866861, 13 p. (2023; Zbl 07901640) Full Text: DOI OA License
Kozhanov, Aleksandr Ivanovich; Abdrakhmanov, Abdrahmanov Aidar Spatially-nonlocal boundary value problems with the generalized Samarskii-Ionkin condition for quasi-parabolic equations. (Russian. English summary) Zbl 07896759 Sib. Èlektron. Mat. Izv. 20, No. 1, 110-123 (2023). MSC: 35L80 35L35 PDFBibTeX XMLCite \textit{A. I. Kozhanov} and \textit{A. A. Abdrakhmanov}, Sib. Èlektron. Mat. Izv. 20, No. 1, 110--123 (2023; Zbl 07896759) Full Text: DOI MNR
Liu, Yang Global attractors for a nonlinear plate equation modeling the oscillations of suspension bridges. (English) Zbl 07887819 Commun. Anal. Mech. 15, No. 3, 436-456 (2023). MSC: 35B41 35L35 35L76 74K20 PDFBibTeX XMLCite \textit{Y. Liu}, Commun. Anal. Mech. 15, No. 3, 436--456 (2023; Zbl 07887819) Full Text: DOI
Durdiev, U. D.; Bozorov, Z. R. Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation. (Russian. English summary) Zbl 07868516 Sib. Zh. Ind. Mat. 26, No. 2, 60-73 (2023); translation in J. Appl. Ind. Math. 17, No. 2, 281-290 (2023). MSC: 35R30 35L35 74K10 PDFBibTeX XMLCite \textit{U. D. Durdiev} and \textit{Z. R. Bozorov}, Sib. Zh. Ind. Mat. 26, No. 2, 60--73 (2023; Zbl 07868516); translation in J. Appl. Ind. Math. 17, No. 2, 281--290 (2023) Full Text: DOI MNR
Tavares, Eduardo H. Gomes; Silva, Marcio A. Jorge; Narciso, Vando; Vicente, André Intrinsic polynomial squeezing for Balakrishnan-Taylor beam models. (English) Zbl 1540.35068 Kähler, Uwe (ed.) et al., Analysis, applications, and computations. Proceedings of the 13th ISAAC congress, Ghent, Belgium, August 2–6, 2021. Cham: Birkhäuser. Trends Math., 621-633 (2023). MSC: 35B40 35L35 35L76 35R09 PDFBibTeX XMLCite \textit{E. H. G. Tavares} et al., in: Analysis, applications, and computations. Proceedings of the 13th ISAAC congress, Ghent, Belgium, August 2--6, 2021. Cham: Birkhäuser. 621--633 (2023; Zbl 1540.35068) Full Text: DOI arXiv
Pang, Yue; Yin, Yufeng Global well-posedness of fourth-order Petrovsky equation with weak and strong damping terms. (English) Zbl 07859140 Appl. Anal. 102, No. 16, 4581-4594 (2023). MSC: 35L35 35B40 35B44 35D30 35D35 35L76 PDFBibTeX XMLCite \textit{Y. Pang} and \textit{Y. Yin}, Appl. Anal. 102, No. 16, 4581--4594 (2023; Zbl 07859140) Full Text: DOI
Bibilashvili, Teona A boundary value problem for a class of higher order nonlinear hyperbolic equations. (English) Zbl 07838510 Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 37, 3-6 (2023). MSC: 35L35 PDFBibTeX XMLCite \textit{T. Bibilashvili}, Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 37, 3--6 (2023; Zbl 07838510) Full Text: Link
Ahlem, Merah; Fatiha, Mesloub Existence and uniqueness of solutions for nonlinear viscoelastic plate equation with \(\overrightarrow{p}(x,t)\)-Laplacian operator and delay. (English) Zbl 1537.35226 Melliani, Said (ed.) et al., Recent advances in fuzzy sets theory, fractional calculus, dynamic systems and optimization. Contributions based on the presentations at the international conference on partial differential equations and applications, modeling and simulation, Beni Mellal, Morocco, from June 1–2, 2021. Cham: Springer. Lect. Notes Netw. Syst. 476, 66-78 (2023). MSC: 35L35 35L76 35R09 47D06 74K20 PDFBibTeX XMLCite \textit{M. Ahlem} and \textit{M. Fatiha}, Lect. Notes Netw. Syst. 476, 66--78 (2023; Zbl 1537.35226) Full Text: DOI
Khalmukhamedov, A. R.; Kuchkorov, E. I. On the solvability of a nonlocal problem for a Boussinesq-type differential equation. (English. Russian original) Zbl 1533.35007 Russ. Math. 67, No. 10, 54-62 (2023); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 10, 60-69 (2023). MSC: 35A01 35A02 35L35 35Q35 PDFBibTeX XMLCite \textit{A. R. Khalmukhamedov} and \textit{E. I. Kuchkorov}, Russ. Math. 67, No. 10, 54--62 (2023; Zbl 1533.35007); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 10, 60--69 (2023) Full Text: DOI
Durdiev, U. D. Inverse source problem for the equation of forced vibrations of a beam. (English. Russian original) Zbl 1533.35368 Russ. Math. 67, No. 8, 7-17 (2023); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 8, 10-22 (2023). MSC: 35R30 35L35 74H45 74K10 PDFBibTeX XMLCite \textit{U. D. Durdiev}, Russ. Math. 67, No. 8, 7--17 (2023; Zbl 1533.35368); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 8, 10--22 (2023) Full Text: DOI
Alaeddine, Draifia Global existence and general decay of Moore-Gibson-Thompson equation with not necessarily decreasing kernel. (English) Zbl 07805596 Bol. Soc. Parana. Mat. (3) 41, Paper No. 37, 15 p. (2023). MSC: 35B40 35L35 74D05 35G05 PDFBibTeX XMLCite \textit{D. Alaeddine}, Bol. Soc. Parana. Mat. (3) 41, Paper No. 37, 15 p. (2023; Zbl 07805596) Full Text: DOI OA License
Kosugi, Chiharu; Aiki, Toyohiko Large time behavior of solutions for a PDE model for compressible elastic curve. (English) Zbl 1532.35060 Discrete Contin. Dyn. Syst., Ser. S 16, No. 12, 3733-3745 (2023). MSC: 35B40 35G31 35L35 35L76 74B20 PDFBibTeX XMLCite \textit{C. Kosugi} and \textit{T. Aiki}, Discrete Contin. Dyn. Syst., Ser. S 16, No. 12, 3733--3745 (2023; Zbl 1532.35060) Full Text: DOI
Pang, Tiantian; Qin, Lanlan; Wang, Xingchang Blowup phenomena for a fourth order wave equation at high initial energy level. (English) Zbl 1532.35090 Discrete Contin. Dyn. Syst., Ser. S 16, No. 11, 3258-3269 (2023). MSC: 35B44 35L35 35L76 PDFBibTeX XMLCite \textit{T. Pang} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 11, 3258--3269 (2023; Zbl 1532.35090) Full Text: DOI
Shahrouzi, Mohammad; Tahamtani, Faramarz; Ferreira, Jorge; Freitas, Mirelson M. Blow-up results for a Boussinesq-type plate equation with a logarithmic damping term and variable-exponent nonlinearities. (English) Zbl 1532.35091 Appl. Math. 50, No. 1, 81-96 (2023). MSC: 35B44 35L35 35L76 PDFBibTeX XMLCite \textit{M. Shahrouzi} et al., Appl. Math. 50, No. 1, 81--96 (2023; Zbl 1532.35091) Full Text: DOI
Kang, Yong Han A blow-up result for a stochastic higher-order Kirchhoff-type equation with nonlinear damping and source terms. (English) Zbl 1531.35090 East Asian Math. J. 39, No. 3, 319-329 (2023). MSC: 35B44 35L35 35L77 35R09 35R60 PDFBibTeX XMLCite \textit{Y. H. Kang}, East Asian Math. J. 39, No. 3, 319--329 (2023; Zbl 1531.35090) Full Text: DOI
Park, Sun Hye A general stability result for a viscoelastic von Karman equation. (English) Zbl 1531.35074 Math. Methods Appl. Sci. 46, No. 14, 15828-15837 (2023). MSC: 35B40 35J40 35J61 35L35 35R09 35Q74 PDFBibTeX XMLCite \textit{S. H. Park}, Math. Methods Appl. Sci. 46, No. 14, 15828--15837 (2023; Zbl 1531.35074) Full Text: DOI
Cui, Xiaona; Li, Ke Well-posedness and dynamics for the von Karman equation with memory and nonlinear time-varying delay. (English) Zbl 1531.35080 Math. Methods Appl. Sci. 46, No. 14, 15481-15505 (2023). MSC: 35B41 35L35 35L76 35R09 74K20 PDFBibTeX XMLCite \textit{X. Cui} and \textit{K. Li}, Math. Methods Appl. Sci. 46, No. 14, 15481--15505 (2023; Zbl 1531.35080) Full Text: DOI
Ding, Hang; Zhou, Jun Initial boundary value problem for a Kirchhoff wave model with strong nonlinear damping. (English) Zbl 1531.35088 Math. Methods Appl. Sci. 46, No. 14, 14794-14813 (2023). MSC: 35B44 35L35 35L76 35R09 PDFBibTeX XMLCite \textit{H. Ding} and \textit{J. Zhou}, Math. Methods Appl. Sci. 46, No. 14, 14794--14813 (2023; Zbl 1531.35088) Full Text: DOI
Peng, Xiaoming; Shang, Yadong Asymptotic stability for a quasilinear viscoelastic equation with nonlinear damping and memory. (English) Zbl 1538.35063 J. Partial Differ. Equations 36, No. 4, 349-364 (2023). MSC: 35B40 35L35 35L76 PDFBibTeX XMLCite \textit{X. Peng} and \textit{Y. Shang}, J. Partial Differ. Equations 36, No. 4, 349--364 (2023; Zbl 1538.35063) Full Text: DOI
Kiguradze, Tariel; Aljaber, Noha; Ben-Rabha, Raja Nonlocal boundary value problems for higher order linear hyperbolic equations with two independent variables. (English) Zbl 1531.35169 Mem. Differ. Equ. Math. Phys. 90, 55-80 (2023). MSC: 35L35 34B08 34B10 35B30 PDFBibTeX XMLCite \textit{T. Kiguradze} et al., Mem. Differ. Equ. Math. Phys. 90, 55--80 (2023; Zbl 1531.35169) Full Text: Link
Umarov, Kh. G. Blow-up of the solution to the equation for nonlinear beam vibrations with allowance for transverse deformation effects. (English. Russian original) Zbl 1530.35079 Comput. Math. Math. Phys. 63, No. 11, 2107-2122 (2023); translation from Zh. Vychisl. Mat. Mat. 63, No. 11, 1877-1893 (2023). MSC: 35B44 35L35 35L76 74H45 74K10 PDFBibTeX XMLCite \textit{Kh. G. Umarov}, Comput. Math. Math. Phys. 63, No. 11, 2107--2122 (2023; Zbl 1530.35079); translation from Zh. Vychisl. Mat. Mat. 63, No. 11, 1877--1893 (2023) Full Text: DOI
Peyravi, Amir Lifespan estimates and asymptotic stability for a class of fourth-order damped \(p\)-Laplacian wave equations with logarithmic nonlinearity. (English) Zbl 1530.35058 Bol. Soc. Mat. Mex., III. Ser. 29, No. 3, Paper No. 91, 35 p. (2023). MSC: 35B40 35B44 35L35 35L76 PDFBibTeX XMLCite \textit{A. Peyravi}, Bol. Soc. Mat. Mex., III. Ser. 29, No. 3, Paper No. 91, 35 p. (2023; Zbl 1530.35058) Full Text: DOI
Al-Mahdi, Adel M.; Al-Gharabli, Mohammad M.; Zahri, Mostafa Theoretical and numerical decay results of a viscoelastic suspension bridge with variable exponents nonlinearity. (English) Zbl 1531.35049 Math. Nachr. 296, No. 12, 5426-5453 (2023). MSC: 35B40 35B35 35L35 35L76 35Q74 93D20 PDFBibTeX XMLCite \textit{A. M. Al-Mahdi} et al., Math. Nachr. 296, No. 12, 5426--5453 (2023; Zbl 1531.35049) Full Text: DOI
Huntul, M. J.; Tekin, Ibrahim Simultaneous determination of the time-dependent potential and force terms in a fourth-order Rayleigh-Love equation. (English) Zbl 1530.35363 Math. Methods Appl. Sci. 46, No. 6, 6949-6971 (2023). MSC: 35R30 35L35 PDFBibTeX XMLCite \textit{M. J. Huntul} and \textit{I. Tekin}, Math. Methods Appl. Sci. 46, No. 6, 6949--6971 (2023; Zbl 1530.35363) Full Text: DOI
Wang, Suping; Ma, Qiaozhen; Shao, Xukui Dynamics of suspension bridge equation with delay. (English) Zbl 1530.35062 J. Dyn. Differ. Equations 35, No. 4, 3563-3588 (2023). MSC: 35B40 35L35 35L76 37B55 PDFBibTeX XMLCite \textit{S. Wang} et al., J. Dyn. Differ. Equations 35, No. 4, 3563--3588 (2023; Zbl 1530.35062) Full Text: DOI
Ferhat, Mohamed; Blouhi, Tayeb Decay rate estimates for a von Karman system with Infinite memory and distributed delay terms. (English) Zbl 1529.35055 Appl. Math. E-Notes 23, 383-392 (2023). MSC: 35B40 35L35 35L76 35R09 PDFBibTeX XMLCite \textit{M. Ferhat} and \textit{T. Blouhi}, Appl. Math. E-Notes 23, 383--392 (2023; Zbl 1529.35055) Full Text: Link
Pereira, Ducival Carvalho; Araújo, Geraldo M.; Raposo, Carlos A.; Cabanillas, Victor R. Blow-up results for a viscoelastic beam equation of \(p\)-Laplacian type with strong damping and logarithmic source. (English) Zbl 1529.35094 Math. Methods Appl. Sci. 46, No. 8, 8831-8854 (2023). MSC: 35B44 35B40 35L35 35L76 35R09 PDFBibTeX XMLCite \textit{D. C. Pereira} et al., Math. Methods Appl. Sci. 46, No. 8, 8831--8854 (2023; Zbl 1529.35094) Full Text: DOI
Park, Sun-Hye Blow-up for a von Karman equation with nonlinear dissipation, logarithmic source, and acoustic boundary conditions. (English) Zbl 1529.35093 Math. Methods Appl. Sci. 46, No. 8, 8632-8645 (2023). MSC: 35B44 35L35 35L76 74K20 PDFBibTeX XMLCite \textit{S.-H. Park}, Math. Methods Appl. Sci. 46, No. 8, 8632--8645 (2023; Zbl 1529.35093) Full Text: DOI
Chen, Kailun; Zhou, Jun Well-posedness and dynamical properties for extensible beams with nonlocal frictional damping and polynomial nonlinearity. (English) Zbl 1527.35059 Appl. Math. Optim. 88, No. 3, Paper No. 92, 35 p. (2023). MSC: 35B40 35B44 35L35 35L72 74K10 PDFBibTeX XMLCite \textit{K. Chen} and \textit{J. Zhou}, Appl. Math. Optim. 88, No. 3, Paper No. 92, 35 p. (2023; Zbl 1527.35059) Full Text: DOI
Zhao, Chunxiang; Zhao, Chunyan; Zhong, Chengkui Existence of polynomial attractor for a class of extensible beams with nonlocal weak damping. (English) Zbl 07771467 Commun. Math. Sci. 21, No. 5, 1393-1413 (2023). MSC: 35B40 35B41 35L35 35L72 35R09 37B55 74K10 PDFBibTeX XMLCite \textit{C. Zhao} et al., Commun. Math. Sci. 21, No. 5, 1393--1413 (2023; Zbl 07771467) Full Text: DOI
Kaltenbacher, Barbara; Rundell, William On the simultaneous reconstruction of the nonlinearity coefficient and the sound speed in the Westervelt equation. (English) Zbl 1527.35494 Inverse Probl. 39, No. 10, Article ID 105001, 18 p. (2023). MSC: 35R30 35L35 65M32 76Q05 PDFBibTeX XMLCite \textit{B. Kaltenbacher} and \textit{W. Rundell}, Inverse Probl. 39, No. 10, Article ID 105001, 18 p. (2023; Zbl 1527.35494) Full Text: DOI arXiv
Bezerra, Flank D. M.; Liu, Linfang; Narciso, Vando Stability by polynomial squeezing for a class of energy damping plate models. (English) Zbl 1527.35055 Acta Appl. Math. 188, Paper No. 8, 19 p. (2023). MSC: 35B40 35L35 35L76 74K20 PDFBibTeX XMLCite \textit{F. D. M. Bezerra} et al., Acta Appl. Math. 188, Paper No. 8, 19 p. (2023; Zbl 1527.35055) Full Text: DOI
Shahrouzi, Mohammad; Ferreira, Jorge; Tahamtani, Faramarz Global existence, asymptotic stability and blow up of solutions for a nonlinear viscoelastic plate equation involving \((p(x), q(x))\)-Laplacian operator. (English) Zbl 1526.35076 Z. Anal. Anwend. 42, No. 1-2, 91-115 (2023). MSC: 35B40 35B44 35L35 35L71 35R09 PDFBibTeX XMLCite \textit{M. Shahrouzi} et al., Z. Anal. Anwend. 42, No. 1--2, 91--115 (2023; Zbl 1526.35076) Full Text: DOI
Kelleche, Abdelkarim; Saedpanah, Fardin Stabilization of an axially moving Euler Bernoulli beam by an adaptive boundary control. (English) Zbl 1530.35047 J. Dyn. Control Syst. 29, No. 3, 1037-1054 (2023). Reviewer: Ti-Jun Xiao (Fudan) MSC: 35B40 35L35 65N30 74K10 93B52 PDFBibTeX XMLCite \textit{A. Kelleche} and \textit{F. Saedpanah}, J. Dyn. Control Syst. 29, No. 3, 1037--1054 (2023; Zbl 1530.35047) Full Text: DOI
Tang, Wei; Wang, Zhiyong Strong damping wave equations defined by a class of self-similar measures with overlaps. (English) Zbl 1537.35227 J. Anal. Math. 150, No. 1, 249-274 (2023). MSC: 35L35 28A80 31E05 65N30 PDFBibTeX XMLCite \textit{W. Tang} and \textit{Z. Wang}, J. Anal. Math. 150, No. 1, 249--274 (2023; Zbl 1537.35227) Full Text: DOI
Boughamsa, Wissem; Ouaoua, Amar Global existence and general decay of solution for a nonlinear wave equation with variable exponents and memory term. (English) Zbl 1523.35040 Mem. Differ. Equ. Math. Phys. 89, 61-78 (2023). MSC: 35B40 35L35 35L71 35R09 PDFBibTeX XMLCite \textit{W. Boughamsa} and \textit{A. Ouaoua}, Mem. Differ. Equ. Math. Phys. 89, 61--78 (2023; Zbl 1523.35040) Full Text: Link
Bibilashvili, Teona; Kharibegashvili, Sergo Darboux type problem for a class of fourth-order nonlinear hyperbolic equations. (English) Zbl 1523.35218 Mem. Differ. Equ. Math. Phys. 89, 39-59 (2023). MSC: 35L35 35L71 35A01 35A02 PDFBibTeX XMLCite \textit{T. Bibilashvili} and \textit{S. Kharibegashvili}, Mem. Differ. Equ. Math. Phys. 89, 39--59 (2023; Zbl 1523.35218) Full Text: Link
Mustafa, Muhammad I. Viscoelasticity versus nonlinear feedback in plate systems: optimal decay. (English) Zbl 1523.35053 Appl. Anal. 102, No. 15, 4140-4161 (2023). MSC: 35B40 35L35 35R09 74K20 93D15 93D20 PDFBibTeX XMLCite \textit{M. I. Mustafa}, Appl. Anal. 102, No. 15, 4140--4161 (2023; Zbl 1523.35053) Full Text: DOI
Zhang, Jiangwei; Liu, Zhiming; Huang, Jianhua Upper semicontinuity of optimal attractors for viscoelastic equations lacking strong damping. (English) Zbl 1523.35065 Appl. Anal. 102, No. 13, 3609-3628 (2023). MSC: 35B41 35L35 35L71 PDFBibTeX XMLCite \textit{J. Zhang} et al., Appl. Anal. 102, No. 13, 3609--3628 (2023; Zbl 1523.35065) Full Text: DOI
Rahmoune, Abita Lower and upper bounds for the blow-up time to a viscoelastic Petrovsky wave equation with variable sources and memory term. (English) Zbl 1523.35076 Appl. Anal. 102, No. 12, 3503-3531 (2023). MSC: 35B44 35L35 35L71 35R09 74D10 PDFBibTeX XMLCite \textit{A. Rahmoune}, Appl. Anal. 102, No. 12, 3503--3531 (2023; Zbl 1523.35076) Full Text: DOI
Hamadouche, Taklit Existence and blow up of solutions for a Petrovsky equation with variable-exponents. (English) Zbl 1523.35219 S\(\vec{\text{e}}\)MA J. 80, No. 3, 393-413 (2023). MSC: 35L35 35L71 35D30 65M60 PDFBibTeX XMLCite \textit{T. Hamadouche}, S\(\vec{\text{e}}\)MA J. 80, No. 3, 393--413 (2023; Zbl 1523.35219) Full Text: DOI
Koumatos, Konstantinos; Lattanzio, Corrado; Spirito, Stefano; Tzavaras, Athanasios E. Existence and uniqueness for a viscoelastic Kelvin-Voigt model with nonconvex stored energy. (English) Zbl 1523.35225 J. Hyperbolic Differ. Equ. 20, No. 2, 433-474 (2023). MSC: 35L72 35L35 74D10 PDFBibTeX XMLCite \textit{K. Koumatos} et al., J. Hyperbolic Differ. Equ. 20, No. 2, 433--474 (2023; Zbl 1523.35225) Full Text: DOI arXiv
Fernández, José R.; Quintanilla, Ramón Uniqueness for a high order ill posed problem. (English) Zbl 1522.35570 Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 5, 1425-1438 (2023). MSC: 35R25 35B40 35G16 35L35 80A17 74F05 PDFBibTeX XMLCite \textit{J. R. Fernández} and \textit{R. Quintanilla}, Proc. R. Soc. Edinb., Sect. A, Math. 153, No. 5, 1425--1438 (2023; Zbl 1522.35570) Full Text: DOI OA License
Yu, Jiali; Di, Huafei Variable-coefficient viscoelastic wave equation with acoustic boundary conditions: global existence, blowup and energy decay rates. (English) Zbl 1522.35087 Banach J. Math. Anal. 17, No. 4, Paper No. 68, 37 p. (2023). MSC: 35B40 35L35 35L76 35R09 46B06 47G20 PDFBibTeX XMLCite \textit{J. Yu} and \textit{H. Di}, Banach J. Math. Anal. 17, No. 4, Paper No. 68, 37 p. (2023; Zbl 1522.35087) Full Text: DOI
Liu, Gongwei; Yin, Mengyun; Xia, Suxia Blow-up phenomena for a class of extensible beam equations. (English) Zbl 1522.35340 Mediterr. J. Math. 20, No. 5, Paper No. 266, 18 p. (2023). MSC: 35L76 35B44 35L35 35R09 PDFBibTeX XMLCite \textit{G. Liu} et al., Mediterr. J. Math. 20, No. 5, Paper No. 266, 18 p. (2023; Zbl 1522.35340) Full Text: DOI arXiv
Aouadi, Moncef; Guerine, Souad Observability and attractors of nonlinear von Kármán beams. (English) Zbl 1522.35090 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 6, Paper No. 70, 45 p. (2023). MSC: 35B41 35L35 35L76 37L30 74K10 93B07 PDFBibTeX XMLCite \textit{M. Aouadi} and \textit{S. Guerine}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 6, Paper No. 70, 45 p. (2023; Zbl 1522.35090) Full Text: DOI
Lapa, Eugenio Cabanillas Global solutions for a nonlinear Kirchhoff type equation with viscosity. (English) Zbl 1522.35075 Opusc. Math. 43, No. 5, 689-701 (2023). MSC: 35B40 35L35 35B33 35L76 35L80 35L70 PDFBibTeX XMLCite \textit{E. C. Lapa}, Opusc. Math. 43, No. 5, 689--701 (2023; Zbl 1522.35075) Full Text: DOI
Zhang, Mengyuan; Liu, Zhiqing; Zhang, Xinli Well-posedness and asymptotic behavior for the dissipative \(p\)-biharmonic wave equation with logarithmic nonlinearity and damping terms. (English) Zbl 1519.35216 Comput. Math. Math. Phys. 63, No. 6, 1103-1121 (2023). MSC: 35L77 35B40 35L35 PDFBibTeX XMLCite \textit{M. Zhang} et al., Comput. Math. Math. Phys. 63, No. 6, 1103--1121 (2023; Zbl 1519.35216) Full Text: DOI
Zhou, Cong; Sun, Chunyou Stability for a class of extensible beams with degenerate nonlocal damping. (English) Zbl 1518.35068 J. Geom. Anal. 33, No. 9, Paper No. 295, 30 p. (2023). MSC: 35B35 35L35 35L76 35Q74 74K20 PDFBibTeX XMLCite \textit{C. Zhou} and \textit{C. Sun}, J. Geom. Anal. 33, No. 9, Paper No. 295, 30 p. (2023; Zbl 1518.35068) Full Text: DOI
Chen, Yuxuan; Li, Yanan; Yang, Zhijian Stability of strong exponential attractors for the Kirchhoff wave model with structural nonlinear damping. (English) Zbl 1518.35131 Appl. Math. Lett. 144, Article ID 108716, 7 p. (2023). MSC: 35B41 35B35 35L35 35L77 PDFBibTeX XMLCite \textit{Y. Chen} et al., Appl. Math. Lett. 144, Article ID 108716, 7 p. (2023; Zbl 1518.35131) Full Text: DOI
Peng, Qingqing; Zhang, Zhifei Global attractor for a coupled wave and plate equation with nonlocal weak damping on Riemannian manifolds. (English) Zbl 1518.35134 Appl. Math. Optim. 88, No. 2, Paper No. 28, 26 p. (2023). MSC: 35B41 35L71 35L76 35L20 35L35 35R09 74K20 PDFBibTeX XMLCite \textit{Q. Peng} and \textit{Z. Zhang}, Appl. Math. Optim. 88, No. 2, Paper No. 28, 26 p. (2023; Zbl 1518.35134) Full Text: DOI
Liao, Menglan; Tan, Zhong Asymptotic stability for a viscoelastic equation with the time-varying delay. (English) Zbl 1525.35034 Math. Model. Anal. 28, No. 1, 23-41 (2023). Reviewer: Jin Liang (Shanghai) MSC: 35B40 26A51 35L35 35L77 35R09 93D20 PDFBibTeX XMLCite \textit{M. Liao} and \textit{Z. Tan}, Math. Model. Anal. 28, No. 1, 23--41 (2023; Zbl 1525.35034) Full Text: DOI OA License
Kang, Jum-Ran Arbitrary decay for a von Karman system with memory. (English) Zbl 1518.35104 Bound. Value Probl. 2023, Paper No. 16, 14 p. (2023). MSC: 35B40 35L35 35L76 74K20 PDFBibTeX XMLCite \textit{J.-R. Kang}, Bound. Value Probl. 2023, Paper No. 16, 14 p. (2023; Zbl 1518.35104) Full Text: DOI OA License
Kelleche, Abdelkarim; Feng, Baowei On general decay for a nonlinear viscoelastic equation. (English) Zbl 1517.35043 Appl. Anal. 102, No. 6, 1582-1600 (2023). MSC: 35B40 35L35 35L77 74D10 93D15 93D20 PDFBibTeX XMLCite \textit{A. Kelleche} and \textit{B. Feng}, Appl. Anal. 102, No. 6, 1582--1600 (2023; Zbl 1517.35043) Full Text: DOI
Shahrouzi, Mohammad; Ferreira, Jorge; Pişkin, Erhan; Zennir, Khaled On the behavior of solutions for a class of nonlinear viscoelastic fourth-order \(p(x)\)-Laplacian equation. (English) Zbl 1517.35050 Mediterr. J. Math. 20, No. 4, Paper No. 214, 28 p. (2023). MSC: 35B40 35B44 35L35 35L77 74D10 PDFBibTeX XMLCite \textit{M. Shahrouzi} et al., Mediterr. J. Math. 20, No. 4, Paper No. 214, 28 p. (2023; Zbl 1517.35050) Full Text: DOI
Li, Xiatong; Fang, Zhong Bo Blow-up phenomena for a damped plate equation with logarithmic nonlinearity. (English) Zbl 1517.35072 Nonlinear Anal., Real World Appl. 71, Article ID 103823, 32 p. (2023). MSC: 35B44 35L35 35L77 74K20 PDFBibTeX XMLCite \textit{X. Li} and \textit{Z. B. Fang}, Nonlinear Anal., Real World Appl. 71, Article ID 103823, 32 p. (2023; Zbl 1517.35072) Full Text: DOI
Ding, Hang; Zhou, Jun Blow-up for the Timoshenko-type equation with variable exponents. (English) Zbl 1517.35064 Nonlinear Anal., Real World Appl. 71, Article ID 103801, 20 p. (2023). MSC: 35B44 35L35 35L77 PDFBibTeX XMLCite \textit{H. Ding} and \textit{J. Zhou}, Nonlinear Anal., Real World Appl. 71, Article ID 103801, 20 p. (2023; Zbl 1517.35064) Full Text: DOI
Narciso, Vando; Ekinci, Fatma; Pişkin, Erhan On a beam model with degenerate nonlocal nonlinear damping. (English) Zbl 1517.35030 Evol. Equ. Control Theory 12, No. 2, 732-751 (2023). MSC: 35B35 35L35 35L76 74K10 PDFBibTeX XMLCite \textit{V. Narciso} et al., Evol. Equ. Control Theory 12, No. 2, 732--751 (2023; Zbl 1517.35030) Full Text: DOI
Chentouf, Boumediène; Han, Zhong-Jie On the elimination of infinite memory effects on the stability of a nonlinear non-homogeneous rotating body-beam system. (English) Zbl 1516.35058 J. Dyn. Differ. Equations 35, No. 2, 1719-1743 (2023). MSC: 35B35 35B40 35L35 74D05 93D05 93D15 PDFBibTeX XMLCite \textit{B. Chentouf} and \textit{Z.-J. Han}, J. Dyn. Differ. Equations 35, No. 2, 1719--1743 (2023; Zbl 1516.35058) Full Text: DOI
Sabitov, K. B. Forward and inverse source reconstruction problems for the equations of vibrations of a rectangular plate. (English. Russian original) Zbl 1516.35261 Comput. Math. Math. Phys. 63, No. 4, 582-595 (2023); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 4, 614-628 (2023). MSC: 35L35 35R30 74H45 74K20 PDFBibTeX XMLCite \textit{K. B. Sabitov}, Comput. Math. Math. Phys. 63, No. 4, 582--595 (2023; Zbl 1516.35261); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 4, 614--628 (2023) Full Text: DOI
Liao, Menglan; Li, Qingwei Blow-up of solutions to the fourth-order equation with variable-exponent nonlinear weak damping. (English) Zbl 1514.35064 Mediterr. J. Math. 20, No. 3, Paper No. 179, 16 p. (2023). MSC: 35B44 35D30 35L35 35L76 PDFBibTeX XMLCite \textit{M. Liao} and \textit{Q. Li}, Mediterr. J. Math. 20, No. 3, Paper No. 179, 16 p. (2023; Zbl 1514.35064) Full Text: DOI