Ghalini, Rohollah Ghaedi; Hesameddini, Esmail; Dastjerdi, Hojatollah Laeli An efficient spectral collocation method for solving Volterra delay integral equations of the third kind. (English) Zbl 07901802 J. Comput. Appl. Math. 454, Article ID 116138, 11 p. (2025). MSC: 65R20 45D05 PDFBibTeX XMLCite \textit{R. G. Ghalini} et al., J. Comput. Appl. Math. 454, Article ID 116138, 11 p. (2025; Zbl 07901802) Full Text: DOI
Amirali, Ilhame; Fedakar, Burcu; Amiraliyev, Gabil M. Second-order numerical method for a neutral Volterra integro-differential equation. (English) Zbl 07900358 J. Comput. Appl. Math. 453, Article ID 116160, 8 p. (2025). MSC: 65R20 45J05 45D05 PDFBibTeX XMLCite \textit{I. Amirali} et al., J. Comput. Appl. Math. 453, Article ID 116160, 8 p. (2025; Zbl 07900358) Full Text: DOI
Katani, Roghayeh; Shahmorad, Sedaghat; Conte, Dajana Approximate solution of multi-term fractional differential equations via a block-by-block method. (English) Zbl 07900340 J. Comput. Appl. Math. 453, Article ID 116135, 10 p. (2025). MSC: 65R20 45D05 26A33 PDFBibTeX XMLCite \textit{R. Katani} et al., J. Comput. Appl. Math. 453, Article ID 116135, 10 p. (2025; Zbl 07900340) Full Text: DOI
Amiri, Mahdie; Ashrafi, Ali A new approach for ranking decision-making units in data envelopment analysis by using communication game theory. (English) Zbl 07908520 Iran. J. Numer. Anal. Optim. 14, No. 1, 44-76 (2024). MSC: 45D05 42C10 65G99 PDFBibTeX XMLCite \textit{M. Amiri} and \textit{A. Ashrafi}, Iran. J. Numer. Anal. Optim. 14, No. 1, 44--76 (2024; Zbl 07908520) Full Text: DOI OA License
Qiu, Wenlin; Li, Yiqun; Zheng, Xiangcheng Numerical analysis of nonlinear Volterra integrodifferential equations for viscoelastic rods and plates. (English) Zbl 07908400 Calcolo 61, No. 3, Paper No. 50, 29 p. (2024). MSC: 65R20 74S20 45J05 45D05 74K10 74K20 PDFBibTeX XMLCite \textit{W. Qiu} et al., Calcolo 61, No. 3, Paper No. 50, 29 p. (2024; Zbl 07908400) Full Text: DOI
Birem, Fouzia; Boulmerka, Aissa; Laib, Hafida; Hennous, Chahinaz Goursat problem in hyperbolic partial differential equations with variable coefficients solved by Taylor collocation method. (English) Zbl 07908228 Iran. J. Numer. Anal. Optim. 14, No. 2, 613-637 (2024). MSC: 45D05 34K28 45L05 30K05 PDFBibTeX XMLCite \textit{F. Birem} et al., Iran. J. Numer. Anal. Optim. 14, No. 2, 613--637 (2024; Zbl 07908228) Full Text: DOI OA License
Webb, Jeffrey R. L. Nonexistence results for fractional differential inequalities. (English) Zbl 07906583 Electron. J. Differ. Equ. 2024, Paper No. 40, 16 p. (2024). MSC: 34A08 34A40 45D05 PDFBibTeX XMLCite \textit{J. R. L. Webb}, Electron. J. Differ. Equ. 2024, Paper No. 40, 16 p. (2024; Zbl 07906583) Full Text: DOI
Mushtaq Mudheher, Aws; Pishbin, S.; Darania, P.; Malek Bagomghaleh, Shadi High-rate convergent multistep collocation techniques to a first-kind Volterra integral equation along with the proportional vanishing delay. (English) Zbl 07901881 Appl. Numer. Math. 204, 188-205 (2024). MSC: 65R20 45D05 PDFBibTeX XMLCite \textit{A. Mushtaq Mudheher} et al., Appl. Numer. Math. 204, 188--205 (2024; Zbl 07901881) Full Text: DOI
Pedas, Arvet; Vikerpuur, Mikk On the regularity of solutions to a class of nonlinear Volterra integral equations with singularities. (English) Zbl 07901880 Appl. Numer. Math. 204, 176-187 (2024). MSC: 45D05 45G05 PDFBibTeX XMLCite \textit{A. Pedas} and \textit{M. Vikerpuur}, Appl. Numer. Math. 204, 176--187 (2024; Zbl 07901880) Full Text: DOI
Chen, Yanping; Chen, Zhenrong; Huang, Yunqing An hp-version of the discontinuous Galerkin method for fractional integro-differential equations with weakly singular kernels. (English) Zbl 07896744 BIT 64, No. 3, Paper No. 27, 23 p. (2024). MSC: 34A08 45D05 65R20 PDFBibTeX XMLCite \textit{Y. Chen} et al., BIT 64, No. 3, Paper No. 27, 23 p. (2024; Zbl 07896744) Full Text: DOI
Rajabova, Lutfiya Nusratovna; Khushvakhtzoda, Mukhidin Burak Model three-dimensional Volterra type integral equations with boundary singular, weak singular and strong singular kernels. (Russian. English summary) Zbl 07896378 Vladikavkaz. Mat. Zh. 26, No. 2, 103-112 (2024). MSC: 45D05 PDFBibTeX XMLCite \textit{L. N. Rajabova} and \textit{M. B. Khushvakhtzoda}, Vladikavkaz. Mat. Zh. 26, No. 2, 103--112 (2024; Zbl 07896378) Full Text: DOI MNR
Segni, Sami; Guebbai, Hamza; Kamouche, Somia; Haddouche, Khawla Nonlinear Volterra integro-differential equations incorporating a delay term using Picard iterated method. (English) Zbl 07895372 J. Appl. Math. Comput. 70, No. 4, 3235-3256 (2024). MSC: 45J05 45D05 45L05 65R20 PDFBibTeX XMLCite \textit{S. Segni} et al., J. Appl. Math. Comput. 70, No. 4, 3235--3256 (2024; Zbl 07895372) Full Text: DOI
Tair, Boutheina; Slimani, Walid Solving higher-order nonlinear Volterra integro-differential equations using two discretization methods. (English) Zbl 07895354 J. Appl. Math. Comput. 70, No. 4, 2785-2807 (2024). MSC: 65R20 45J05 45D05 PDFBibTeX XMLCite \textit{B. Tair} and \textit{W. Slimani}, J. Appl. Math. Comput. 70, No. 4, 2785--2807 (2024; Zbl 07895354) Full Text: DOI
Liu, ZhiPeng; Tao, DongYa; Zhang, Chao An efficient spectral method for nonlinear Volterra integro-differential equations with weakly singular kernels. (English) Zbl 07895287 Math. Model. Anal. 29, No. 3, 387-405 (2024). MSC: 65R20 45D05 45G05 45J05 65L60 PDFBibTeX XMLCite \textit{Z. Liu} et al., Math. Model. Anal. 29, No. 3, 387--405 (2024; Zbl 07895287) Full Text: DOI
Merikhi, Mohamed Lamine; Guebbai, Hamza; Benrabia, Noureddine; Moumen Bekkouche, Mohamed A novel conformable fractional approach to the Brusselator system with numerical simulation. (English) Zbl 07893835 J. Appl. Math. Comput. 70, No. 2, 1707-1721 (2024). MSC: 86A15 45D05 65D30 34A08 PDFBibTeX XMLCite \textit{M. L. Merikhi} et al., J. Appl. Math. Comput. 70, No. 2, 1707--1721 (2024; Zbl 07893835) Full Text: DOI
Webber, James W. Generalized Abel equations and applications to translation invariant Radon transforms. (English) Zbl 07892358 J. Inverse Ill-Posed Probl. 32, No. 4, 835-857 (2024). Reviewer: Vincenzo Vespri (Firenze) MSC: 45Q05 45D05 44A12 68U10 PDFBibTeX XMLCite \textit{J. W. Webber}, J. Inverse Ill-Posed Probl. 32, No. 4, 835--857 (2024; Zbl 07892358) Full Text: DOI arXiv
Georgievskii, D. V.; Rautian, N. A. Well-posed solvability of Volterra integro-differential equations arising in viscoelasticity theory. (English. Russian original) Zbl 07891413 Differ. Equ. 60, No. 4, 504-521 (2024); translation from Differ. Uravn. 60, No. 4, 533-549 (2024). MSC: 45K05 45D05 45P05 45M10 74D99 PDFBibTeX XMLCite \textit{D. V. Georgievskii} and \textit{N. A. Rautian}, Differ. Equ. 60, No. 4, 504--521 (2024; Zbl 07891413); translation from Differ. Uravn. 60, No. 4, 533--549 (2024) Full Text: DOI
Askhabov, S. N. Initial value problem for a third-order nonlinear integro-differential equation of convolution type. (English. Russian original) Zbl 07891412 Differ. Equ. 60, No. 4, 492-503 (2024); translation from Differ. Uravn. 60, No. 4, 521-532 (2024). MSC: 45J05 45E10 45D05 PDFBibTeX XMLCite \textit{S. N. Askhabov}, Differ. Equ. 60, No. 4, 492--503 (2024; Zbl 07891412); translation from Differ. Uravn. 60, No. 4, 521--532 (2024) Full Text: DOI
Goligerdian, Arash; Oshagh, Mahmood Khaksar-e; Jaberi-Douraki, Majid Applying thin plate splines to the Galerkin method for the numerical simulation of a nonlinear model for population dynamics. (English) Zbl 07890877 J. Comput. Appl. Math. 451, Article ID 116036, 18 p. (2024). MSC: 45D05 45G05 65D12 92D25 PDFBibTeX XMLCite \textit{A. Goligerdian} et al., J. Comput. Appl. Math. 451, Article ID 116036, 18 p. (2024; Zbl 07890877) Full Text: DOI
Feng, Yuanyuan; Li, Lei A class of monotonicity-preserving variable-step discretizations for Volterra integral equations. (English) Zbl 07887427 BIT 64, No. 3, Paper No. 24, 33 p. (2024). MSC: 65R20 45D05 PDFBibTeX XMLCite \textit{Y. Feng} and \textit{L. Li}, BIT 64, No. 3, Paper No. 24, 33 p. (2024; Zbl 07887427) Full Text: DOI arXiv
Conte, Dajana; Moradi, Leila; Paternoster, Beatrice; Podhaisky, Helmut Collocation methods for nonlinear Volterra integral equations with oscillatory kernel. (English) Zbl 07885871 Appl. Numer. Math. 203, 1-15 (2024). MSC: 65R20 65D32 45D05 PDFBibTeX XMLCite \textit{D. Conte} et al., Appl. Numer. Math. 203, 1--15 (2024; Zbl 07885871) Full Text: DOI
Qin, Yu; Huang, Chengming An \(\boldsymbol{hp}\)-version error estimate of spectral collocation methods for weakly singular Volterra integro-differential equations with vanishing delays. (English) Zbl 07884750 Comput. Appl. Math. 43, No. 5, Paper No. 301, 32 p. (2024). MSC: 45D05 65R20 65L60 PDFBibTeX XMLCite \textit{Y. Qin} and \textit{C. Huang}, Comput. Appl. Math. 43, No. 5, Paper No. 301, 32 p. (2024; Zbl 07884750) Full Text: DOI
Aourir, E.; Izem, N.; Laeli Dastjerdi, H. Numerical solution of third-kind Volterra integral equations with proportional delays based on moving least squares collocation method. (English) Zbl 07880535 Int. J. Comput. Math. 101, No. 4, 447-464 (2024). MSC: 45D05 45G10 65R20 PDFBibTeX XMLCite \textit{E. Aourir} et al., Int. J. Comput. Math. 101, No. 4, 447--464 (2024; Zbl 07880535) Full Text: DOI
Boykov, I. V.; Roudnev, V. A.; Boykova, A. I. Stability of solutions of systems of Volterra integral equations. (English) Zbl 07879837 Appl. Math. Comput. 475, Article ID 128728, 15 p. (2024). MSC: 45D05 45M10 45J05 PDFBibTeX XMLCite \textit{I. V. Boykov} et al., Appl. Math. Comput. 475, Article ID 128728, 15 p. (2024; Zbl 07879837) Full Text: DOI arXiv
Berezansky, Leonid; Domoshnitsky, Alexander; Kupervasser, Oleg Bounded solutions and exponential stability for linear integro-differential equations of Volterra type. (English) Zbl 07879160 Appl. Math. Lett. 154, Article ID 109112, 7 p. (2024). MSC: 45J05 45M10 45D05 PDFBibTeX XMLCite \textit{L. Berezansky} et al., Appl. Math. Lett. 154, Article ID 109112, 7 p. (2024; Zbl 07879160) Full Text: DOI
Paul, Supriya Kumar; Mishra, Lakshmi Narayan Approximation of solutions through the Fibonacci wavelets and measure of noncompactness to nonlinear Volterra-Fredholm fractional integral equations. (English) Zbl 07878432 Korean J. Math. 32, No. 1, 137-162 (2024). MSC: 45B05 45D05 45L05 47N20 65R20 26A33 42C40 65T60 PDFBibTeX XMLCite \textit{S. K. Paul} and \textit{L. N. Mishra}, Korean J. Math. 32, No. 1, 137--162 (2024; Zbl 07878432) Full Text: DOI
Hosseinian, Alireza; Assari, Pouria; Dehghan, Mehdi An efficient numerical scheme to solve generalized Abel’s integral equations with delay arguments utilizing locally supported RBFs. (English) Zbl 07876181 J. Comput. Appl. Math. 446, Article ID 115867, 24 p. (2024). MSC: 65R20 45D05 65D12 PDFBibTeX XMLCite \textit{A. Hosseinian} et al., J. Comput. Appl. Math. 446, Article ID 115867, 24 p. (2024; Zbl 07876181) Full Text: DOI
Ghasemi, M.; Goligerdian, A.; Moradi, S. A novel super-convergent numerical method for solving nonlinear Volterra integral equations based on B-splines. (English) Zbl 07875693 Mediterr. J. Math. 21, No. 4, Paper No. 129, 22 p. (2024). MSC: 65R20 65D07 45D05 PDFBibTeX XMLCite \textit{M. Ghasemi} et al., Mediterr. J. Math. 21, No. 4, Paper No. 129, 22 p. (2024; Zbl 07875693) Full Text: DOI
Gasimov, Jasarat J.; Asadzade, Javad A.; Mahmudov, Nazim I. Pontryagin maximum principle for fractional delay differential equations and controlled weakly singular Volterra delay integral equations. (English) Zbl 07871724 Qual. Theory Dyn. Syst. 23, No. 5, Paper No. 213, 26 p. (2024). MSC: 49K15 45D05 34A12 PDFBibTeX XMLCite \textit{J. J. Gasimov} et al., Qual. Theory Dyn. Syst. 23, No. 5, Paper No. 213, 26 p. (2024; Zbl 07871724) Full Text: DOI arXiv OA License
Jameel, Saif Aldeen M.; Rahman, Saja Abdul; Hamoud, Ahmed A. Analysis of Hilfer fractional Volterra-Fredholm system. (English) Zbl 07868042 Nonlinear Funct. Anal. Appl. 29, No. 1, 259-273 (2024). MSC: 45J05 45D05 45B05 26A33 PDFBibTeX XMLCite \textit{S. A. M. Jameel} et al., Nonlinear Funct. Anal. Appl. 29, No. 1, 259--273 (2024; Zbl 07868042) Full Text: Link
Atshan, Shakir M.; Hamoud, Ahmed A. Qualitative analysis of ABR-fractional Volterra-Fredholm system. (English) Zbl 07868035 Nonlinear Funct. Anal. Appl. 29, No. 1, 113-130 (2024). MSC: 45J05 45D05 45B05 47H10 PDFBibTeX XMLCite \textit{S. M. Atshan} and \textit{A. A. Hamoud}, Nonlinear Funct. Anal. Appl. 29, No. 1, 113--130 (2024; Zbl 07868035) Full Text: Link
From, Steven G. Some new bounds for the blow-up time of solutions for certain nonlinear Volterra integral equations. (English) Zbl 07866536 J. Comput. Appl. Math. 445, Article ID 115834, 15 p. (2024). Reviewer: Gustaf Gripenberg (Aalto) MSC: 45D05 45G10 PDFBibTeX XMLCite \textit{S. G. From}, J. Comput. Appl. Math. 445, Article ID 115834, 15 p. (2024; Zbl 07866536) Full Text: DOI
Yao, Guoqing; Wang, Zhongqing; Zhang, Chao A multi-domain hybrid spectral collocation method for nonlinear Volterra integral equations with weakly singular kernel. (English) Zbl 07866498 J. Comput. Appl. Math. 444, Article ID 115785, 18 p. (2024). MSC: 65R20 45D05 PDFBibTeX XMLCite \textit{G. Yao} et al., J. Comput. Appl. Math. 444, Article ID 115785, 18 p. (2024; Zbl 07866498) Full Text: DOI
Bica, Alexandru Mihai; Satmari, Zoltan Bernstein numerical method for solving nonlinear fractional and weakly singular Volterra integral equations of the second kind. (English) Zbl 07866483 Dolomites Res. Notes Approx. 17, No. 2, 33-43 (2024). MSC: 65R20 45D05 PDFBibTeX XMLCite \textit{A. M. Bica} and \textit{Z. Satmari}, Dolomites Res. Notes Approx. 17, No. 2, 33--43 (2024; Zbl 07866483) Full Text: DOI
Cival Buranay, Suzan Bivariate modified Bernstein-Kantorovich operators for the numerical solution of two-dimensional fractional Volterra integral equations. (English) Zbl 07861223 Math. Methods Appl. Sci. 47, No. 5, 3763-3785 (2024). MSC: 65R20 45D05 26A33 PDFBibTeX XMLCite \textit{S. Cival Buranay}, Math. Methods Appl. Sci. 47, No. 5, 3763--3785 (2024; Zbl 07861223) Full Text: DOI
Chaouchi, Belkacem; Kostić, Marko; Koyuncuoğlu, Halis Can Metrical Stepanov almost automorphy and applications. (English) Zbl 07861029 Bull. Iran. Math. Soc. 50, No. 1, Paper No. 6, 21 p. (2024). MSC: 42A75 42A85 47D99 45D05 35L05 34K14 PDFBibTeX XMLCite \textit{B. Chaouchi} et al., Bull. Iran. Math. Soc. 50, No. 1, Paper No. 6, 21 p. (2024; Zbl 07861029) Full Text: DOI
Ahmadova, Arzu; Mahmudov, Nazim I. Picard approximation of a singular backward stochastic nonlinear Volterra integral equation. (English) Zbl 07859967 Qual. Theory Dyn. Syst. 23, No. 4, Paper No. 192, 20 p. (2024). MSC: 45R05 45D05 45L05 60H20 65R20 PDFBibTeX XMLCite \textit{A. Ahmadova} and \textit{N. I. Mahmudov}, Qual. Theory Dyn. Syst. 23, No. 4, Paper No. 192, 20 p. (2024; Zbl 07859967) Full Text: DOI arXiv OA License
Nadir, Mohamed Raid; Jawahdou, Adel A modified cubic spline for solving integral equations with logarithmic kernel. (English) Zbl 07859268 Adv. Stud. Contemp. Math., Kyungshang 34, No. 1, 19-28 (2024). MSC: 65R20 45D05 45E05 45L05 PDFBibTeX XMLCite \textit{M. R. Nadir} and \textit{A. Jawahdou}, Adv. Stud. Contemp. Math., Kyungshang 34, No. 1, 19--28 (2024; Zbl 07859268) Full Text: DOI
Messina, Eleonora; Pezzella, Mario; Vecchio, Antonia A long-time behavior preserving numerical scheme for age-of-infection epidemic models with heterogeneous mixing. (English) Zbl 1537.92131 Appl. Numer. Math. 200, 344-357 (2024). MSC: 92D30 45D05 65R20 PDFBibTeX XMLCite \textit{E. Messina} et al., Appl. Numer. Math. 200, 344--357 (2024; Zbl 1537.92131) Full Text: DOI
Shayanfard, F.; Laeli Dastjerdi, H. A multistep collocation method for approximate solution of Volterra integro-differential equations of the third kind. (English) Zbl 07855885 Comput. Appl. Math. 43, No. 4, Paper No. 176, 13 p. (2024). MSC: 45A05 45D05 45E99 PDFBibTeX XMLCite \textit{F. Shayanfard} and \textit{H. Laeli Dastjerdi}, Comput. Appl. Math. 43, No. 4, Paper No. 176, 13 p. (2024; Zbl 07855885) Full Text: DOI
Shcheglov, A. Yu.; Netesov, S. V. The inverse problem for a age-structured population dynamics model with account to migration flows. (Russian. English summary) Zbl 1537.92094 Sib. Zh. Vychisl. Mat. 27, No. 1, 113-120 (2024). MSC: 92D25 35R30 45D05 PDFBibTeX XMLCite \textit{A. Yu. Shcheglov} and \textit{S. V. Netesov}, Sib. Zh. Vychisl. Mat. 27, No. 1, 113--120 (2024; Zbl 1537.92094) Full Text: DOI MNR
Netesov, S. V.; Shcheglov, A. Yu. Inverse problem for a nonlinear model of population dynamics with the age structure of individuals and overpopulation. (English. Russian original) Zbl 1537.92088 Mosc. Univ. Comput. Math. Cybern. 48, No. 1, 20-30 (2024); translation from Vestn. Mosk. Univ., Ser. XV 2024, No. 1, 23-32 (2024). MSC: 92D25 35F20 35R30 45D05 PDFBibTeX XMLCite \textit{S. V. Netesov} and \textit{A. Yu. Shcheglov}, Mosc. Univ. Comput. Math. Cybern. 48, No. 1, 20--30 (2024; Zbl 1537.92088); translation from Vestn. Mosk. Univ., Ser. XV 2024, No. 1, 23--32 (2024) Full Text: DOI
Behme, Anita; Oechsler, David Invariant measures of Lévy-type operators and their associated Markov processes. (English) Zbl 07854751 Electron. J. Probab. 29, Paper No. 59, 29 p. (2024). MSC: 60G10 60J25 60J35 45B05 45D05 60G51 60H10 60H20 PDFBibTeX XMLCite \textit{A. Behme} and \textit{D. Oechsler}, Electron. J. Probab. 29, Paper No. 59, 29 p. (2024; Zbl 07854751) Full Text: DOI arXiv
Bouzeraieb, H.; Laib, H.; Boulmerka, A. Numerical solution of neutral double delay Volterra integral equations using Taylor collocation method. (English) Zbl 07854513 Nonlinear Dyn. Syst. Theory 24, No. 3, 236-245 (2024). MSC: 65R20 45D05 45L05 34K40 92D25 PDFBibTeX XMLCite \textit{H. Bouzeraieb} et al., Nonlinear Dyn. Syst. Theory 24, No. 3, 236--245 (2024; Zbl 07854513) Full Text: Link
Huang, Qiong; Bi, Wenbin; Cui, Hongxin; Guo, Tao Numerical analysis of temporal second-order accurate scheme for the abstract Volterra integrodifferential equation. (English) Zbl 1539.65202 Math. Methods Appl. Sci. 47, No. 4, 2966-2980 (2024). MSC: 65R20 45D05 45K05 PDFBibTeX XMLCite \textit{Q. Huang} et al., Math. Methods Appl. Sci. 47, No. 4, 2966--2980 (2024; Zbl 1539.65202) Full Text: DOI
Ladjimi, Meriem; Guezane Lakoud, Assia Stability of solutions of fractional neutral Levin-Nohel integro-differential equations. (English) Zbl 1539.45008 Math. Methods Appl. Sci. 47, No. 4, 2623-2638 (2024). MSC: 45J05 45D05 45M10 26A33 PDFBibTeX XMLCite \textit{M. Ladjimi} and \textit{A. Guezane Lakoud}, Math. Methods Appl. Sci. 47, No. 4, 2623--2638 (2024; Zbl 1539.45008) Full Text: DOI
Remili, Walid; Rahmoune, Azedine; Li, Chenkuan Galerkin spectral method for linear second-kind Volterra integral equations with weakly singular kernels on large intervals. (English) Zbl 1539.65205 Math. Methods Appl. Sci. 47, No. 4, 2329-2344 (2024). MSC: 65R20 45D05 45E10 PDFBibTeX XMLCite \textit{W. Remili} et al., Math. Methods Appl. Sci. 47, No. 4, 2329--2344 (2024; Zbl 1539.65205) Full Text: DOI
Tunç, Osman; Tunç, Cemil On Ulam stabilities of iterative Fredholm and Volterra integral equations with multiple time-varying delays. (English) Zbl 07851915 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 118, No. 3, Paper No. 83, 20 p. (2024). MSC: 45D05 45B05 45J05 45M10 47H10 47N20 PDFBibTeX XMLCite \textit{O. Tunç} and \textit{C. Tunç}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 118, No. 3, Paper No. 83, 20 p. (2024; Zbl 07851915) Full Text: DOI OA License
Herrera, Franco; Trofimchuk, Sergei Dynamics of one-dimensional maps and Gurtin-MacCamy’s population model. I: Asymptotically constant solutions. (English) Zbl 07849486 Ukr. Math. J. 75, No. 12, 1850-1868 (2024) and Ukr. Mat. Zh. 75, No. 12, 1635-1651 (2023). MSC: 45D05 45E10 45M05 92D25 37N25 PDFBibTeX XMLCite \textit{F. Herrera} and \textit{S. Trofimchuk}, Ukr. Math. J. 75, No. 12, 1850--1868 (2024; Zbl 07849486) Full Text: DOI
Das, Anupam; Hazarika, Bipan; Abbas, Syed; Nashine, Hemant Kumar; Deep, Amar Existence of solutions of fractional hybrid differential equations via measure of noncompactness. (English) Zbl 07845362 Rocky Mt. J. Math. 54, No. 2, 439-449 (2024). MSC: 47H10 45D05 PDFBibTeX XMLCite \textit{A. Das} et al., Rocky Mt. J. Math. 54, No. 2, 439--449 (2024; Zbl 07845362) Full Text: DOI Link
Kostić, M.; Fedorov, V. E.; Koyuncuoğlu, H. C. Metrical Bochner criterion and metrical Stepanov almost periodicity. (English) Zbl 07842789 Chelyabinskiĭ Fiz.-Mat. Zh. 9, No. 1, 90-100 (2024). MSC: 42A75 45D05 47G20 PDFBibTeX XMLCite \textit{M. Kostić} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 9, No. 1, 90--100 (2024; Zbl 07842789) Full Text: DOI MNR
Hu, Bei-Bei; Shen, Zu-Yi; Zhang, Ling Nonlocal Kundu-Eckhaus equation: integrability, Riemann-Hilbert approach and Cauchy problem with step-like initial data. (English) Zbl 1537.35145 Lett. Math. Phys. 114, No. 2, Paper No. 55, 18 p. (2024). MSC: 35C08 35Q15 37K10 45D05 PDFBibTeX XMLCite \textit{B.-B. Hu} et al., Lett. Math. Phys. 114, No. 2, Paper No. 55, 18 p. (2024; Zbl 1537.35145) Full Text: DOI
Ismail, Nur Inshirah Naqiah; Majid, Zanariah Abdul Numerical solution on neutral delay Volterra integro-differential equation. (English) Zbl 1537.65200 Bull. Malays. Math. Sci. Soc. (2) 47, No. 3, Paper No. 85, 27 p. (2024). MSC: 65R20 45J05 45D05 34K40 PDFBibTeX XMLCite \textit{N. I. N. Ismail} and \textit{Z. A. Majid}, Bull. Malays. Math. Sci. Soc. (2) 47, No. 3, Paper No. 85, 27 p. (2024; Zbl 1537.65200) Full Text: DOI
Zhao, Yi; Fan, Engui Existence of global solutions to the nonlocal Schrödinger equation on the line. (English) Zbl 1539.35249 Stud. Appl. Math. 152, No. 1, 111-146 (2024). MSC: 35Q55 35Q41 35Q15 35P25 37K10 34L25 45D05 35A01 35A02 PDFBibTeX XMLCite \textit{Y. Zhao} and \textit{E. Fan}, Stud. Appl. Math. 152, No. 1, 111--146 (2024; Zbl 1539.35249) Full Text: DOI arXiv
Mostafazadeh, Mahdi; Shahmorad, Sedaghat; Erdoğan, Fevzi Existence, uniqueness and blow-up of solutions for generalized auto-convolution Volterra integral equations. (English) Zbl 07834526 Appl. Math. Comput. 471, Article ID 128608, 12 p. (2024). MSC: 45D05 45G10 PDFBibTeX XMLCite \textit{M. Mostafazadeh} et al., Appl. Math. Comput. 471, Article ID 128608, 12 p. (2024; Zbl 07834526) Full Text: DOI
Bagomghaleh, Shadi Malek; Pishbin, Saeed; Gholami, Gholamhossein Numerical and analytical findings on the Volterra integral-algebraic index-1 system with vanishing delays. (English) Zbl 07832804 Appl. Math. Comput. 466, Article ID 128449, 20 p. (2024). MSC: 45A05 45D05 45F05 45F15 41A35 41A52 41A55 PDFBibTeX XMLCite \textit{S. M. Bagomghaleh} et al., Appl. Math. Comput. 466, Article ID 128449, 20 p. (2024; Zbl 07832804) Full Text: DOI
Hernández, Erwin; Lepe, Felipe; Vellojin, Jesus A mixed parameter formulation with applications to linear viscoelastic slender structures. (English) Zbl 07832694 ESAIM, Math. Model. Numer. Anal. 58, No. 1, 157-189 (2024). MSC: 65M60 65M06 65N30 65M12 65N12 65M15 45D05 65R20 35A15 76A10 74K20 74B10 74D05 35Q74 PDFBibTeX XMLCite \textit{E. Hernández} et al., ESAIM, Math. Model. Numer. Anal. 58, No. 1, 157--189 (2024; Zbl 07832694) Full Text: DOI
Iskandarov, S.; Khalilov, A. T. The method of Lyapunov functionals and the boundedness of solutions and their first and second derivatives for a third-order linear equation of the Volterra type on the half-line. (English) Zbl 07831574 Differ. Equ. 60, No. 1, 91-100 (2024). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45J05 45D05 PDFBibTeX XMLCite \textit{S. Iskandarov} and \textit{A. T. Khalilov}, Differ. Equ. 60, No. 1, 91--100 (2024; Zbl 07831574) Full Text: DOI
Friesen, Martin; Jin, Peng Volterra square-root process: stationarity and regularity of the law. (English) Zbl 1534.60048 Ann. Appl. Probab. 34, No. 1A, 318-356 (2024). MSC: 60G22 45D05 91G20 PDFBibTeX XMLCite \textit{M. Friesen} and \textit{P. Jin}, Ann. Appl. Probab. 34, No. 1A, 318--356 (2024; Zbl 1534.60048) Full Text: DOI arXiv Link
Aourir, E.; Izem, N.; Dastjerdi, H. Laeli A computational approach for solving third kind VIEs by collocation method based on radial basis functions. (English) Zbl 1536.65168 J. Comput. Appl. Math. 440, Article ID 115636, 24 p. (2024). MSC: 65R20 45D05 65D12 PDFBibTeX XMLCite \textit{E. Aourir} et al., J. Comput. Appl. Math. 440, Article ID 115636, 24 p. (2024; Zbl 1536.65168) Full Text: DOI
Abdi, A.; Berrut, J.-P.; Podhaisky, H. The barycentric rational predictor-corrector schemes for Volterra integral equations. (English) Zbl 1536.65167 J. Comput. Appl. Math. 440, Article ID 115611, 18 p. (2024). MSC: 65R20 45D05 65D32 41A20 41A55 PDFBibTeX XMLCite \textit{A. Abdi} et al., J. Comput. Appl. Math. 440, Article ID 115611, 18 p. (2024; Zbl 1536.65167) Full Text: DOI
Wang, Guangyan; Wang, Tongke Singular asymptotic expansion and Legendre collocation method for two-term weakly singular Volterra integral equation of the second kind. (English) Zbl 1535.65317 Appl. Numer. Math. 197, 344-362 (2024). MSC: 65R20 45D05 45E10 PDFBibTeX XMLCite \textit{G. Wang} and \textit{T. Wang}, Appl. Numer. Math. 197, 344--362 (2024; Zbl 1535.65317) Full Text: DOI
Goligerdian, Arash; Khaksar-e Oshagh, Mahmood The numerical solution of a time-delay model of population growth with immigration using Legendre wavelets. (English) Zbl 1535.65309 Appl. Numer. Math. 197, 243-257 (2024). MSC: 65R20 45G10 45D05 65T60 PDFBibTeX XMLCite \textit{A. Goligerdian} and \textit{M. Khaksar-e Oshagh}, Appl. Numer. Math. 197, 243--257 (2024; Zbl 1535.65309) Full Text: DOI
Singh, Aman; Postnikov, Eugene B.; Yadav, Poonam; Singh, Vineet Kumar Weakly singular Volterra integral equation with combined logarithmic-power-law kernel: analytical and computational consideration. (English) Zbl 1535.65316 Appl. Numer. Math. 197, 164-185 (2024). MSC: 65R20 45D05 45E10 65T60 PDFBibTeX XMLCite \textit{A. Singh} et al., Appl. Numer. Math. 197, 164--185 (2024; Zbl 1535.65316) Full Text: DOI
Kim, Kyeong-Hun; Park, Daehan A Sobolev space theory for time-fractional stochastic partial differential equations driven by Lévy processes. (English) Zbl 1535.60115 J. Theor. Probab. 37, No. 1, 671-720 (2024). MSC: 60H15 35R60 45D05 60G51 60H40 PDFBibTeX XMLCite \textit{K.-H. Kim} and \textit{D. Park}, J. Theor. Probab. 37, No. 1, 671--720 (2024; Zbl 1535.60115) Full Text: DOI arXiv
Solhi, Erfan; Mirzaee, Farshid; Naserifar, Shiva Enhanced moving least squares method for solving the stochastic fractional Volterra integro-differential equations of Hammerstein type. (English) Zbl 1535.65018 Numer. Algorithms 95, No. 4, 1921-1951 (2024). MSC: 65C30 60H20 60H35 45D05 45G10 26A33 65R20 PDFBibTeX XMLCite \textit{E. Solhi} et al., Numer. Algorithms 95, No. 4, 1921--1951 (2024; Zbl 1535.65018) Full Text: DOI
Wang, Yifei; Huang, Jin; Li, Hu A numerical approach for the system of nonlinear variable-order fractional Volterra integral equations. (English) Zbl 1535.65319 Numer. Algorithms 95, No. 4, 1855-1877 (2024). MSC: 65R20 26A33 45D05 65D32 PDFBibTeX XMLCite \textit{Y. Wang} et al., Numer. Algorithms 95, No. 4, 1855--1877 (2024; Zbl 1535.65319) Full Text: DOI
Wang, Tongke; Lian, Huan; Ji, Lu Singularity separation Chebyshev collocation method for weakly singular Volterra integral equations of the second kind. (English) Zbl 1535.65318 Numer. Algorithms 95, No. 4, 1829-1854 (2024). MSC: 65R20 45D05 PDFBibTeX XMLCite \textit{T. Wang} et al., Numer. Algorithms 95, No. 4, 1829--1854 (2024; Zbl 1535.65318) Full Text: DOI
Kumar, Sunil; Kumar, Shashikant; Sumit A priori and a posteriori error estimation for singularly perturbed delay integro-differential equations. (English) Zbl 1535.65313 Numer. Algorithms 95, No. 4, 1561-1582 (2024). MSC: 65R20 45J05 45D05 65L11 65L12 65L70 PDFBibTeX XMLCite \textit{S. Kumar} et al., Numer. Algorithms 95, No. 4, 1561--1582 (2024; Zbl 1535.65313) Full Text: DOI
Fakharany, M.; El-Borai, Mahmoud M.; Abu Ibrahim, M. A. A unified approach to solving parabolic Volterra partial integro-differential equations for a broad category of kernels: numerical analysis and computing. (English) Zbl 1535.65308 Results Appl. Math. 21, Article ID 100425, 12 p. (2024). MSC: 65R20 65M06 65N06 65T50 65M12 35R09 45K05 45D05 35A21 35Q79 PDFBibTeX XMLCite \textit{M. Fakharany} et al., Results Appl. Math. 21, Article ID 100425, 12 p. (2024; Zbl 1535.65308) Full Text: DOI OA License
Mallet-Paret, John; Nussbaum, Roger D. Analytic solutions of delay-differential equations. (English) Zbl 07818493 J. Dyn. Differ. Equations 36, No. 1, Suppl., S223-S251 (2024). MSC: 26E05 34K13 34K27 34K41 26E15 26E20 45D05 45G10 45M15 PDFBibTeX XMLCite \textit{J. Mallet-Paret} and \textit{R. D. Nussbaum}, J. Dyn. Differ. Equations 36, No. 1, S223--S251 (2024; Zbl 07818493) Full Text: DOI
Gao, Hecong; Liang, Hui On the convergence of discontinuous Galerkin methods for integral-algebraic equations of index 1. (English) Zbl 1534.65269 Discrete Contin. Dyn. Syst., Ser. B 29, No. 5, 2092-2109 (2024). MSC: 65R20 45D05 45L05 PDFBibTeX XMLCite \textit{H. Gao} and \textit{H. Liang}, Discrete Contin. Dyn. Syst., Ser. B 29, No. 5, 2092--2109 (2024; Zbl 1534.65269) Full Text: DOI
Chen, Jian-Hua; Lu, Wen-Ying A new approach to abstract linear viscoelastic equation in Hilbert space. (English) Zbl 07812528 Z. Angew. Math. Phys. 75, No. 1, Paper No. 13, 24 p. (2024). Reviewer: Alain Brillard (Riedisheim) MSC: 45N05 45J05 45D05 45M10 47D06 74D05 PDFBibTeX XMLCite \textit{J.-H. Chen} and \textit{W.-Y. Lu}, Z. Angew. Math. Phys. 75, No. 1, Paper No. 13, 24 p. (2024; Zbl 07812528) Full Text: DOI
Amirkhizi, Simin Aghaei; Mahmoudi, Yaghoub; Shamloo, Ali Salimi Solution of Volterra integral equations of the first kind with discontinuous kernels by using the Adomian decomposition method. (English) Zbl 1533.65253 Comput. Methods Differ. Equ. 12, No. 1, 189-195 (2024). MSC: 65R20 45D05 PDFBibTeX XMLCite \textit{S. A. Amirkhizi} et al., Comput. Methods Differ. Equ. 12, No. 1, 189--195 (2024; Zbl 1533.65253) Full Text: DOI
Ma, Zheng; Stynes, Martin; Huang, Chengming Convergence and superconvergence of a fractional collocation method for weakly singular Volterra integro-differential equations. (English) Zbl 1533.65256 BIT 64, No. 1, Paper No. 9, 28 p. (2024). MSC: 65R20 45J05 45D05 65L60 PDFBibTeX XMLCite \textit{Z. Ma} et al., BIT 64, No. 1, Paper No. 9, 28 p. (2024; Zbl 1533.65256) Full Text: DOI
Tunç, Osman; Sahu, D. R.; Tunç, Cemil On the Ulam type stabilities of a general iterative integro-differential equation including a variable delay. (English) Zbl 1530.34013 J. Nonlinear Convex Anal. 25, No. 2, 399-417 (2024). MSC: 34A12 34K05 39B82 45D05 45G10 PDFBibTeX XMLCite \textit{O. Tunç} et al., J. Nonlinear Convex Anal. 25, No. 2, 399--417 (2024; Zbl 1530.34013) Full Text: Link
Acquistapace, Paolo; Bucci, Francesca Riccati-based solution to the optimal control of linear evolution equations with finite memory. (English) Zbl 1532.49033 Evol. Equ. Control Theory 13, No. 1, 26-66 (2024). MSC: 49N10 35R09 93C23 49N35 45D05 PDFBibTeX XMLCite \textit{P. Acquistapace} and \textit{F. Bucci}, Evol. Equ. Control Theory 13, No. 1, 26--66 (2024; Zbl 1532.49033) Full Text: DOI arXiv
Liao, Hong-Lin; Tang, Tao; Zhou, Tao Positive definiteness of real quadratic forms resulting from the variable-step \(L1\)-type approximations of convolution operators. (English) Zbl 1532.65054 Sci. China, Math. 67, No. 2, 237-252 (2024). MSC: 65M06 65N06 65M12 35R09 45D05 26A33 35R11 PDFBibTeX XMLCite \textit{H.-L. Liao} et al., Sci. China, Math. 67, No. 2, 237--252 (2024; Zbl 1532.65054) Full Text: DOI arXiv
Lan, Kunquan A basic theory for initial value problems of first order ordinary differential equations with \(L^p\)-Carathéodory functions and applications. (English) Zbl 1537.34023 J. Differ. Equations 386, 368-403 (2024). MSC: 34A12 45D05 47H10 92D25 PDFBibTeX XMLCite \textit{K. Lan}, J. Differ. Equations 386, 368--403 (2024; Zbl 1537.34023) Full Text: DOI
Walther, H.-O. Delay differential equations with differentiable solution operators on open domains in \(C((- \infty, 0], \mathbb{R}^n)\) and processes for Volterra integro-differential equations. (English. Russian original) Zbl 1537.34076 J. Math. Sci., New York 278, No. 2, 264-286 (2024); translation from Sovrem. Mat., Fundam. Napravl. 67, No. 3, 483-506 (2021). Reviewer: Bernhard Lani-Wayda (Gießen) MSC: 34K05 45D05 PDFBibTeX XMLCite \textit{H. O. Walther}, J. Math. Sci., New York 278, No. 2, 264--286 (2024; Zbl 1537.34076); translation from Sovrem. Mat., Fundam. Napravl. 67, No. 3, 483--506 (2021) Full Text: DOI arXiv
Kavitha Williams, W.; Vijayakumar, V.; Udhayakumar, R.; Panda, Sumati Kumari; Nisar, Kottakkaran Sooppy Existence and controllability of nonlocal mixed Volterra-Fredholm type fractional delay integro-differential equations of order \(1 < r < 2\). (English) Zbl 1531.34071 Numer. Methods Partial Differ. Equations 40, No. 1, Article ID e22697, 21 p. (2024). MSC: 34K30 34K35 34K37 45J05 45B05 45D05 93B05 PDFBibTeX XMLCite \textit{W. Kavitha Williams} et al., Numer. Methods Partial Differ. Equations 40, No. 1, Article ID e22697, 21 p. (2024; Zbl 1531.34071) Full Text: DOI
Chakraborty, Samiran; Nelakanti, Gnaneshwar Approximated superconvergent methods for Volterra Hammerstein integral equations. (English) Zbl 1531.45016 Commun. Nonlinear Sci. Numer. Simul. 130, Article ID 107783, 18 p. (2024). MSC: 45L05 45D05 65R20 PDFBibTeX XMLCite \textit{S. Chakraborty} and \textit{G. Nelakanti}, Commun. Nonlinear Sci. Numer. Simul. 130, Article ID 107783, 18 p. (2024; Zbl 1531.45016) Full Text: DOI
Wang, Yuxuan; Wang, Tongke; Lian, Huan The series expansions and blow-up time estimation for the solutions of convolution Volterra-Hammerstein integral equations. (English) Zbl 1535.65320 Numer. Algorithms 95, No. 2, 637-663 (2024). Reviewer: Josef Kofroň (Praha) MSC: 65R20 45D05 45G10 41A21 41A58 PDFBibTeX XMLCite \textit{Y. Wang} et al., Numer. Algorithms 95, No. 2, 637--663 (2024; Zbl 1535.65320) Full Text: DOI
Idczak, Dariusz Optimal control problem governed by a highly nonlinear singular Volterra equation: existence of solutions and maximum principle. (English) Zbl 1531.49007 Optim. Control Appl. Methods 45, No. 1, 274-301 (2024). MSC: 49J21 45D05 PDFBibTeX XMLCite \textit{D. Idczak}, Optim. Control Appl. Methods 45, No. 1, 274--301 (2024; Zbl 1531.49007) Full Text: DOI
Hashemzadeh Kalvari, Arman; Ansari, Alireza; Askari, Hassan Generalization of the Ramanujan’s integrals for the Volterra \(\mu\)-functions via complex contours: representations and approximations. (English) Zbl 1539.41032 Integral Transforms Spec. Funct. 35, No. 1, 33-48 (2024). Reviewer: José L. Lopez (Pamplona) MSC: 41A60 44A10 45D05 PDFBibTeX XMLCite \textit{A. Hashemzadeh Kalvari} et al., Integral Transforms Spec. Funct. 35, No. 1, 33--48 (2024; Zbl 1539.41032) Full Text: DOI
Bondi, Alessandro; Livieri, Giulia; Pulido, Sergio Affine Volterra processes with jumps. (English) Zbl 07787488 Stochastic Processes Appl. 168, Article ID 104264, 25 p. (2024). MSC: 60H20 60G22 45D05 91G20 PDFBibTeX XMLCite \textit{A. Bondi} et al., Stochastic Processes Appl. 168, Article ID 104264, 25 p. (2024; Zbl 07787488) Full Text: DOI arXiv HAL
Dajana, Conte; Eduardo, Cuesta; Carmine, Valentino Non-stationary wave relaxation methods for general linear systems of Volterra equations: convergence and parallel GPU implementation. (English) Zbl 1534.65267 Numer. Algorithms 95, No. 1, 149-180 (2024). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65R20 45D05 65Y05 PDFBibTeX XMLCite \textit{C. Dajana} et al., Numer. Algorithms 95, No. 1, 149--180 (2024; Zbl 1534.65267) Full Text: DOI OA License
Alfonsi, Aurélien; Kebaier, Ahmed Approximation of stochastic Volterra equations with kernels of completely monotone type. (English) Zbl 07782515 Math. Comput. 93, No. 346, 643-677 (2024). MSC: 60H35 91G20 45D05 PDFBibTeX XMLCite \textit{A. Alfonsi} and \textit{A. Kebaier}, Math. Comput. 93, No. 346, 643--677 (2024; Zbl 07782515) Full Text: DOI arXiv
Allouch, Chafik Fast and accurate solvers for weakly singular Volterra integral equations in weighted spaces. (English) Zbl 1525.65133 J. Comput. Appl. Math. 438, Article ID 115535, 19 p. (2024). MSC: 65R20 45D05 PDFBibTeX XMLCite \textit{C. Allouch}, J. Comput. Appl. Math. 438, Article ID 115535, 19 p. (2024; Zbl 1525.65133) Full Text: DOI
Wen, Jiao; Huang, Chengming Multistep Runge-Kutta methods for Volterra integro-differential equations. (English) Zbl 1525.65142 J. Comput. Appl. Math. 436, Article ID 115384, 19 p. (2024). MSC: 65R20 45J05 45D05 65L06 65L20 PDFBibTeX XMLCite \textit{J. Wen} and \textit{C. Huang}, J. Comput. Appl. Math. 436, Article ID 115384, 19 p. (2024; Zbl 1525.65142) Full Text: DOI
Amirali, Ilhame; Acar, Hülya Stability inequalities and numerical solution for neutral Volterra delay integro-differential equation. (English) Zbl 1522.65252 J. Comput. Appl. Math. 436, Article ID 115343, 11 p. (2024). MSC: 65R20 45D05 45J05 PDFBibTeX XMLCite \textit{I. Amirali} and \textit{H. Acar}, J. Comput. Appl. Math. 436, Article ID 115343, 11 p. (2024; Zbl 1522.65252) Full Text: DOI
Huang, Kuang; Jin, Bangti; Zhou, Zhi On an Inverse Problem of the Generalized Bathtub Model of Network Trip Flows. arXiv:2409.00619 Preprint, arXiv:2409.00619 [math.AP] (2024). MSC: 35R30 76A30 35R09 45D05 65R32 BibTeX Cite \textit{K. Huang} et al., ``On an Inverse Problem of the Generalized Bathtub Model of Network Trip Flows'', Preprint, arXiv:2409.00619 [math.AP] (2024) Full Text: arXiv OA License
González-Santander, Juan Luis; Spada, Giorgio; Mainardi, Francesco; Apelblat, Alexander Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform. arXiv:2408.06369 Preprint, arXiv:2408.06369 [physics.class-ph] (2024). MSC: 33E12 44A10 45D05 BibTeX Cite \textit{J. L. González-Santander} et al., ``Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform'', Preprint, arXiv:2408.06369 [physics.class-ph] (2024) Full Text: DOI arXiv OA License
Bondi, Alessandro; Pulido, Sergio Feller’s test for explosions of stochastic Volterra equations. arXiv:2406.13537 Preprint, arXiv:2406.13537 [math.PR] (2024). MSC: 60H20 45D05 60K50 BibTeX Cite \textit{A. Bondi} and \textit{S. Pulido}, ``Feller's test for explosions of stochastic Volterra equations'', Preprint, arXiv:2406.13537 [math.PR] (2024) Full Text: arXiv OA License
Zheng, Xiangcheng; Zhu, Shangqin; Li, Yiqun Weighted Sonine conditions and application. arXiv:2405.19091 Preprint, arXiv:2405.19091 [math.CA] (2024). MSC: 45D05 45H05 26A33 BibTeX Cite \textit{X. Zheng} et al., ``Weighted Sonine conditions and application'', Preprint, arXiv:2405.19091 [math.CA] (2024) Full Text: arXiv OA License
Herrera, Franco; Trofimchuk, Sergei On the global dynamics of a forest model with monotone positive feedback and memory. arXiv:2404.16749 Preprint, arXiv:2404.16749 [math.DS] (2024). MSC: 45D05 92D25 BibTeX Cite \textit{F. Herrera} and \textit{S. Trofimchuk}, ``On the global dynamics of a forest model with monotone positive feedback and memory'', Preprint, arXiv:2404.16749 [math.DS] (2024) Full Text: arXiv OA License
Gomoyunov, Mikhail I. Zero-Sum Games for Volterra Integral Equations and Viscosity Solutions of Path-Dependent Hamilton-Jacobi Equations. arXiv:2404.10428 Preprint, arXiv:2404.10428 [math.OC] (2024). MSC: 45D05 49L20 49L25 49N70 BibTeX Cite \textit{M. I. Gomoyunov}, ``Zero-Sum Games for Volterra Integral Equations and Viscosity Solutions of Path-Dependent Hamilton-Jacobi Equations'', Preprint, arXiv:2404.10428 [math.OC] (2024) Full Text: arXiv OA License
Sidorov, Denis A note on spectral theory of integral-functional Volterra operators. arXiv:2404.07041 Preprint, arXiv:2404.07041 [math.DS] (2024). MSC: 45D05 45M05 BibTeX Cite \textit{D. Sidorov}, ``A note on spectral theory of integral-functional Volterra operators'', Preprint, arXiv:2404.07041 [math.DS] (2024) Full Text: arXiv OA License
Pandolfi, Luciano The quadratic tracking problem for systems with persistent memory in \(\zzr^d\). arXiv:2404.04117 Preprint, arXiv:2404.04117 [math.OC] (2024). MSC: 49J99 45D05 BibTeX Cite \textit{L. Pandolfi}, ``The quadratic tracking problem for systems with persistent memory in $\zzr^d$'', Preprint, arXiv:2404.04117 [math.OC] (2024) Full Text: arXiv OA License
Jaber, Eduardo Abi; Cuchiero, Christa; Pelizzari, Luca; Pulido, Sergio; Svaluto-Ferro, Sara Polynomial Volterra processes. arXiv:2403.14251 Preprint, arXiv:2403.14251 [math.PR] (2024). MSC: 60H15 45D05 60K50 BibTeX Cite \textit{E. A. Jaber} et al., ``Polynomial Volterra processes'', Preprint, arXiv:2403.14251 [math.PR] (2024) Full Text: arXiv OA License