# zbMATH — the first resource for mathematics

Holonomy theory of Finsler manifolds. (English) Zbl 1392.53079
Falcone, Giovanni (ed.), Lie groups, differential equations, and geometry. Advances and surveys. Cham: Springer; Palermo: Università degli Studi di Palermo (ISBN 978-3-319-62180-7/hbk; 978-3-319-62181-4/ebook). UNIPA Springer Series, 265-320 (2017).
The holonomy group of a Finsler manifold is the group generated by parallel translations along loops with respect to the canonical connection.
If the Riemannian holonomy groups have been extensively studied and completely classified, for the Finslerian holonomy only few results are known and many of these are different from the Riemannian one. The authors of this article have seriously studied this subject and obtained fundamental results on it. Since 2011, they have published six other articles on the holonomy theory of Finsler manifolds. They have introduced a method for the investigation of holonomy properties of non-Riemannian Finsler manifolds by constructing tangent Lie algebras to the holonomy group: the curvature algebra, the infinitesimal holonomy algebra, and holonomy algebra.
In the present book chapter, the authors present this method and give a unified treatment of their results. In particular, they show that the dimension of these tangent algebras is usually greater than the possible dimensions of Riemannian holonomy groups and in many cases is infinite. It is proved that the holonomy group of a locally projectively flat Finsler manifold of constant curvature is finite-dimensional if and only if it is a Riemannian manifold or a flat Finsler manifold. Then the authors prove that the topological closure of the holonomy group of a certain class of simply connected, projectively flat Finsler 2-manifolds of constant curvature is not a finite-dimensional Lie group, and that its topological closure is the connected component of the full diffeomorphism group of the circle.
The article has the following sections. 1. Introduction, 2. Preliminaries, 3. Diffeomorphism groups and their tangent algebras, 4. Curvature algebra, 5. Holonomy algebra, 6. Infinite dimensional subalgebras of the infinitesimal holonomy algebra, 7. Dimension of the holonomy group, 8. Maximal holonomy.
The bibliography is quasi-exhaustive, including old articles [G. Randers, Phys. Rev., II. Ser. 59, 195–199 (1941; Zbl 0027.18101); C. Ehresmann, in: Centre Belge Rech. Math., Colloque Topologie, Bruxelles, du 5 au 8 juin 1950, 29–55 (1951; Zbl 0054.07201); A. Borel and A. Lichnerowicz, C. R. Acad. Sci., Paris 234, 1835–1837 (1952; Zbl 0046.39801)], until recent work by L. Kozman and by the authors.
For the entire collection see [Zbl 1381.53010].
Reviewer: Ioan Pop (Iaşi)

##### MSC:
 53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics) 53C29 Issues of holonomy in differential geometry
Full Text:
##### References:
 [1] 1. M. Ackermann, R. Hermann, $$Sophus Lie’s Transformation Group Paper$$ (Mathematical Science Press, Brookline, 1975). [2] 2. W. Barthel, Nichtlineare Zusammenhänge und deren Holonomiegruppen. J. Reine Angew. Math. 212 , pp. 120-149 (1963) · Zbl 0115.39704 [3] 3. A. Borel, A. Lichnerowicz, Groupes d’holonomie de varietes riemanniennes. CR Acad. Sci. Paris 234 , 1835-1837 (1952) · Zbl 0046.39801 [4] 4. R. Bryant, Finsler structures on the 2-sphere satisfying K = 1, in $$Finsler Geometry, Contemporary Mathematics$$ , vol. 196 (American Mathematical Society, Providence, 1996), pp. 27-42 · Zbl 0864.53054 [5] 5. R. Bryant, Projectively flat Finsler 2-spheres of constant curvature. Sel. Math. N. Ser. 3 , 161-204 (1997) · Zbl 0897.53052 [6] 6. S.S. Chern, Z. Shen, $$Riemann-Finsler Geometry$$ . Nankai Tracts in Mathematics, vol. 6 (World Scientific, Singapore, 2005) [7] 7. M. Crampin, D.J. Saunders, Holonomy of a class of bundles with fibre metrics. Publ. Math. Debr. 81 , 199-234 (2012) · Zbl 1299.53145 [8] 8. Ch. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable. Colloque de Topologie, Bruxelles, (1950), pp. 29-55 [9] 9. M.R. Herman, Sur le groupe des difféomorphismes du tore. Ann. Inst. Fourier 23 , 75-86 (1973) · Zbl 0269.58004 [10] 10. Y. Katznelson, $$An Introduction to Harmonic Analysis$$ (Cambridge University Press, Cambridge, 2004) · Zbl 1055.43001 [11] 11. S. Kobayashi, $$Transformation Groups in Differential Geometry$$ . Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 70 (Springer, Berlin, 1972) · Zbl 0246.53031 [12] 12. I. Kolar, P.W. Michor, J. Slovak, $$Natural Operations in Differential Geometry$$ (Springer, Berlin, 1993) · Zbl 0782.53013 [13] 13. L. Kozma, On Landsberg spaces and holonomy of Finsler manifolds. Contemp. Math. 196 , 177-185 (1996) · Zbl 0864.53056 [14] 14. L. Kozma, Holonomy structures in Finsler geometry. Part 5, in $$Handbook of Finsler Geometry$$ , ed. by P.L. Antonelli (Kluwer Academic, Dordrecht, 2003), pp. 445-490 · Zbl 1105.53039 [15] 15. A. Kriegl, P.W. Michor, $$The Convenient Setting for Global Analysis$$ . Surveys and Monographs, vol. 53 (AMS, Providence, 1997) · Zbl 0889.58001 [16] 16. B. Li, Z. Shen, On a class of projectively flat Finsler metrics with constant flag curvature. Int. J. Math. 18 , 1-12 (2007) · Zbl 1120.53011 [17] 17. P.W. Michor, $$Gauge Theory for Fiber Bundles$$ . Monographs and Textbooks in Physical Sciences. Lecture Notes, vol. 19 (Bibliopolis, Napoli, 1991) [18] 18. Z. Muzsnay, P.T. Nagy, Tangent Lie algebras to the holonomy group of a Finsler manifold. Commun. Math. 19 , 137-147 (2011) · Zbl 1247.53026 [19] 19. Z. Muzsnay, P.T. Nagy, Finsler manifolds with non-Riemannian holonomy. Houst. J. Math. 38 , 77-92 (2012) · Zbl 1238.53012 [20] 20. Z. Muzsnay, P.T. Nagy, Witt algebra and the curvature of the Heisenberg group. Commun. Math. 20 , 33-40 (2012) · Zbl 1277.53023 [21] 21. Z. Muzsnay, P.T. Nagy, Characterization of projective Finsler manifolds of constant curvature having infinite dimensional holonomy group. Publ. Math. Debr. 84 , 17-28 (2014) · Zbl 1299.53116 [22] 22. Z. Muzsnay, P.T. Nagy, Projectively flat Finsler manifolds with infinite dimensional holonomy. Forum Mathematicum 27 , 767-786 (2015) · Zbl 1314.53046 [23] 23. Z. Muzsnay, P.T. Nagy, Finsler 2-manifolds with maximal holonomy group of infinite dimension. Differ. Geom. Appl. 39 , 1-9 (2015) · Zbl 1326.53064 [24] 24. S. Numata, On Landsberg spaces of scalar curvature. J. Korean Math. Soc. 12 , 97-100 (1975) · Zbl 0314.53017 [25] 25. H. Omori, $$Infinite-Dimensional Lie Groups$$ . Translation of Mathematical Monographs, vol. 158 (American Mathematical Society, Providence, 1997) · Zbl 0871.58007 [26] 26. G. Randers, On an asymmetrical metric in the fourspace of general relativity. Phys. Rev. (2) 59 , 195-199 (1941) · JFM 67.0920.02 [27] 27. Z. Shen, $$Differential Geometry of Spray and Finsler Spaces$$ (Kluwer Academic, Dordrecht, 2001) [28] 28. Z. Shen, Two-dimensional Finsler metrics of constant flag curvature. Manuscripta Math. 109 , 349-366 (2002) · Zbl 1027.53093 [29] 29. Z. Shen, Projectively flat Randers metrics with constant flag curvature. Math. Ann. 325 , 19-30 (2003) · Zbl 1027.53096 [30] 30. Z. Shen, Projectively flat Finsler metrics with constant flag curvature. Trans. Am. Math. Soc. 355 , 1713-1728 (2003) · Zbl 1027.53095 [31] 31. Z.I. Szabó, Positive definite Berwald spaces. Tensor, New Ser. 35 , 25-39 (1981) · Zbl 0464.53025 [32] 32. J. Teichmann, Regularity of infinite-dimensional Lie groups by metric space methods. Tokyo J. Math. 24 , 29-58 (2001) · Zbl 1007.22023 [33] 33. J.A. Wolf, Differentiable fibre spaces and mappings compatible with Riemannian metrics. Michigan Math. J. 11 , 65-70 (1964) · Zbl 0116.39202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.