×

Quasi-concave density estimation. (English) Zbl 1200.62031

Summary: Maximum likelihood estimation of a log-concave probability density is formulated as a convex optimization problem and shown to have an equivalent dual formulation as a constrained maximum Shannon entropy problem. Closely related maximum A. Rényi entropy estimators [Proc. 4th Berkeley Symp. Math. Stat. Probab. 1, 547–561 (1961; Zbl 0106.33001)] that impose weaker concavity restrictions on the fitted density are also considered, notably a minimum Hellinger discrepancy estimator that constrains the reciprocal of the square-root of the density to be concave. A limiting form of these estimators constrains solutions to the class of quasi-concave densities.

MSC:

62G07 Density estimation
62H12 Estimation in multivariate analysis
90C25 Convex programming
62B10 Statistical aspects of information-theoretic topics
62G20 Asymptotic properties of nonparametric inference

Citations:

Zbl 0106.33001
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andersen, E. D. (2006). The MOSEK optimization tools manual, Version 4.0. Available at .
[2] Avriel, M. (1972). r -convex functions. Math. Program. 2 309-323. · Zbl 0249.90063 · doi:10.1007/BF01584551
[3] Balabdaoui, F., Rufibach, K. and Wellner, J. A. (2009). Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist. 37 1299-1331. · Zbl 1160.62008 · doi:10.1214/08-AOS609
[4] Basu, A., Harris, I. R., Hjort, N. L. and Jones, M. C. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika 85 549-559. JSTOR: · Zbl 0926.62021 · doi:10.1093/biomet/85.3.549
[5] Birgé, L. and Massart, P. (1993). Rates of convergence for minimum contrast estimators. Probab. Theory Related Fields 97 113-150. · Zbl 0805.62037 · doi:10.1007/BF01199316
[6] Borell, C. (1975). Convex set functions in d -space. Period. Math. Hungar. 6 111-136. · Zbl 0307.28009 · doi:10.1007/BF02018814
[7] Borwein, J. and Lewis, A. S. (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples . Springer, New York. · Zbl 1116.90001
[8] Caplin, A. and Nalebuff, B. (1991). Aggregation and social choice: A mean voter theorem. Econometrica 59 1-23. JSTOR: · Zbl 0743.90006 · doi:10.2307/2938238
[9] Chang, G. T. and Walther, G. (2007). Clustering with mixtures of log-concave distributions. Comput. Statist. Data Anal. 51 6242-6251. · Zbl 1445.62141
[10] Cule, M., Gramacy, R. and Samworth, R. (2009). LogConcDEAD: An R package for maximum likelihood estimation of a multivariate log-concave density. J. Statist. Software 29 1-20.
[11] Cule, M., Samworth, R. and Stewart, M. (2010). Computing the maximum likelihood estimator of a multidimensional log-concave density. J. Roy. Statist. Soc. Ser. B . · Zbl 1329.62183
[12] Cule, M. and Samworth, R. (2010). Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density. Electron. J. Statist. 4 254-270. · Zbl 1329.62183
[13] de Finetti, B. (1949). Sulle stratificazioni convesse. Ann. Mat. Pura Appl. 30 173-183. · Zbl 0039.05701 · doi:10.1007/BF02415006
[14] Dharmadhikari, S. and Joag-Dev, K. (1988). Unimodality, Convexity and Applications . Academic Press, Boston. · Zbl 0646.62008
[15] Dümbgen, L., Hüsler, A. and Rufibach, K. (2007). Active set and EM Algorithms for log-concave densities based on complete and censored data. Available at .
[16] Dümbgen, L. and Rufibach, K. (2009). Maximum likelihood estimation of a log-concave density: Basic properties and uniform consistency. Bernoulli 15 40-68. · Zbl 1200.62030 · doi:10.3150/08-BEJ141
[17] Good, I. J. (1971). A nonparametric roughness penalty for probability densities. Nature 229 29-30. · Zbl 0221.62012
[18] Grenander, U. (1956). On the theory of mortality measurement, part II. Skand. Aktuarietidskr. 39 125-153. · Zbl 0077.33715
[19] Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2001). Estimation of a convex function: Characterizations and asymptotic theory. Ann. Statist. 29 1653-1698. · Zbl 1043.62027 · doi:10.1214/aos/1015345958
[20] Gu, C. (2002). Smoothing Spline ANOVA Models . Springer, New York. · Zbl 1051.62034
[21] Hall, P. and Presnell, B. (1999). Density estimation under constraints. J. Comput. Graph. Statist. 8 259-277. JSTOR: · doi:10.2307/1390636
[22] Hardy, G. H., Littlewood, J. E. and Pólya, G. (1934). Inequalities . Cambridge Univ. Press, London. · Zbl 0010.10703
[23] Hiriart-Urruty, J.-B. and Lemaréchal, C. (1993). Convex Analysis and Minimization Algorithms I, II . Springer, Berlin. · Zbl 0795.49002
[24] Hoffleit, D. and Warren, W. H. (1991). The Bright Star Catalog , 5th ed. Yale Univ. Observatory, New Haven, CT.
[25] Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In Proc. Fifth Berkeley Sympos. Math. Statist. Probability 1 221-233. Univ. California Press, Berkeley. · Zbl 0212.21504
[26] Karlin, S. (1968). Total Positivity . Stanford Univ. Press, Stanford, CA. · Zbl 0219.47030
[27] Koenker, R. and Mizera, I. (2008). Primal and dual formulations relevant for the numerical estimation of a probability density via regularization. Tatra Mt. Math. Publ. 39 255-264. · Zbl 1194.62035
[28] Kooperberg, C. and Stone, C. J. (1991). A study of logspline density estimation. Comput. Statist. Data Anal. 12 327-347. · Zbl 0825.62442 · doi:10.1016/0167-9473(91)90115-I
[29] MacDonell, W. R. (1902). On criminal anthropometry and the identification of criminals. Biometrika 1 177-227.
[30] Mizera, I. (2002). On depth and deep points: A calculus. Ann. Statist. 30 1681-1736. · Zbl 1039.62046 · doi:10.1214/aos/1043351254
[31] Müller, S. and Rufibach, K. (2009). Smooth tail-index estimation. J. Stat. Comput. Simul. 79 1155-1167. · Zbl 1179.62075 · doi:10.1080/00949650802142667
[32] Pal, J. K., Woodroofe, M. and Meyer, M. (2007). Estimating a Polya frequency function. In Complex Datasets and Inverse Problems: Tomography, Networks and Beyond (R. Liu, W. Strawderman and C.-H. Zhang, eds.). IMS Lecture Notes-Monograph Series 54 239-249. IMS, Beachwood, OH.
[33] Prékopa, A. (1973). On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34 335-343. · Zbl 0264.90038
[34] Rényi, A. (1961). On measures of entropy and information. In Proc. Fourth Berkeley Symp. Math. Statist. Probab. 547-561. Univ. California Press, Berkeley. · Zbl 0106.33001
[35] Rényi, A. (1965). On the foundations of information theory. Rev. d’Inst. Int. Statist. 33 1-14. · Zbl 0161.16903 · doi:10.2307/1401301
[36] Rockafellar, R. T. (1966). Extensions of Fenchel’s duality theorem for convex functions. Duke Math. J. 33 81-89. · Zbl 0138.09301 · doi:10.1215/S0012-7094-66-03312-6
[37] Rockafellar, R. T. (1970). Convex Analysis . Princeton Univ. Press, Princeton. · Zbl 0193.18401
[38] Rockafellar, R. T. (1971). Integrals which are convex functionals, II. Pacific J. Math. 39 439-469. · Zbl 0236.46031 · doi:10.2140/pjm.1971.39.439
[39] Rockafellar, R. T. (1974). Conjugate Duality and Optimization . SIAM, Philadelphia. · Zbl 0296.90036
[40] Rufibach, K. (2007). Computing maximum likelihood estimators of a log-concave density function. J. Stat. Comput. Simul. 77 561-574. · Zbl 1146.62027 · doi:10.1080/10629360600569097
[41] Rufibach, K. and Dümbgen, L. (2009). Logcondens: Estimate a log-concave probability density from iid observations. R package Version 1.3.4. Available at .
[42] Saunders, M. A. (2003). PDCO: A primal-dual interior solver for convex optimization. Available at .
[43] Schennach, S. (2007). Estimation with exponentially tilted empirical likelihood. Ann. Statist. 35 634-672. · Zbl 1117.62024 · doi:10.1214/009053606000001208
[44] Seregin, A. and Wellner, J. A. (2009). Nonparametric estimation of multivariate convex-transformed densities. Available at . · Zbl 1204.62058
[45] Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. J. Roy. Statist. Soc. Ser. B 43 97-99. JSTOR:
[46] Silverman, B. W. (1982). On the estimation of a probability density function by the maximum penalized likelihood method. Ann. Statist. 10 795-810. · Zbl 0492.62034 · doi:10.1214/aos/1176345872
[47] Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis . Chapman and Hall, London. · Zbl 0617.62042
[48] Student (1908). The probable error of the mean. Biometrika 6 1-23.
[49] Walther, G. (2001). Multiscale maximum likelihood analysis of a semiparametric model with applications. Ann. Statist. 29 1298-1319. · Zbl 1043.62043 · doi:10.1214/aos/1013203455
[50] Walther, G. (2002). Detecting the presence of mixing with multiscale maximum likelihood. J. Amer. Statist. Assoc. 97 508-513. JSTOR: · Zbl 1073.62533 · doi:10.1198/016214502760047032
[51] Walther, G. (2009). Inference and modeling with log-concave distributions. Statist. Sci. 24 319-327. · Zbl 1329.62192
[52] Zeidler, E. (1985). Nonlinear Functional Analysis and Its Applications III: Variational Methods and Optimization . Springer, New York. · Zbl 0583.47051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.