zbMATH — the first resource for mathematics

Length and dimension modulo a Serre category. (English) Zbl 0878.13007
A module \(M\) over a commutative ring \(R\) is called \({\mathcal C}\)-simple with regard to a Serre category \({\mathcal C}\) if for each submodule \(N\) either \(N\in{\mathcal C}\) or \(M/N\in{\mathcal C}\). Using this notion of simplicity the author defines recursively \({\mathcal C}\)-dimension and \({\mathcal C}\)-length for a module, which is shown to generalize various concepts of dimensions, among others the one introduced by R. Rentschler and P. Gabriel for noetherian modules [C. R. Acad. Sci., Paris, Sér. A 265, 712-715 (1967; Zbl 0155.36201)]. In the case of \(M=R\) the results allow certain generalizations of the classical Krull dimension.
13D05 Homological dimension and commutative rings
13C15 Dimension theory, depth, related commutative rings (catenary, etc.)
Full Text: DOI
[1] DOI: 10.1017/S0305004100075137 · Zbl 0757.13006 · doi:10.1017/S0305004100075137
[2] Rentschler K., C.R. Acad. Sci. Paris 265 pp 712– (1967)
[3] DOI: 10.1093/qmath/26.1.269 · Zbl 0311.13006 · doi:10.1093/qmath/26.1.269
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.