zbMATH — the first resource for mathematics

Rigidity of unary algebras and its application to the \({\mathcal {HS} = \mathcal {SH}}\) problem. (English) Zbl 1221.08004
H. P. Gumm and T. Schröder [Algebra Univers. 53, No. 2–3, 229–252 (2005; Zbl 1086.08002)] showed that if a functor \(T:\) {Set} \(\to\) {Set} preserves preimages, then \({\mathcal{H}}{\mathcal{S}}(K)={\mathcal{S}}{\mathcal{H}}(K)\) is valid for any class \(K\) of \(T\)-algebras. The present author applies a construction of rigid unary algebras to prove that \({\mathcal{H}}{\mathcal{S}}\neq{\mathcal{S}}{\mathcal{H}}\) for a class of {Set}-endofunctors not preserving non-empty preimages. For related results cf. also papers by T. Brengos and V. Trnková [Algebra Univers. 63, No. 2–3, 283–301 (2010; Zbl 1220.03011)] and V. Trnková [Commentat. Math. Univ. Carol. 10, 323–352 (1969; Zbl 0183.30401); ibid. 12, 143–174 (1971; Zbl 0232.18004)].
08A60 Unary algebras
03G30 Categorical logic, topoi
08A70 Applications of universal algebra in computer science
18A22 Special properties of functors (faithful, full, etc.)
18B05 Categories of sets, characterizations
PDF BibTeX Cite
Full Text: DOI
[1] Adamék J., Trnková V.: Automata and Algebras in a Category. Kluwer Publishing Company, Dordrecht (1990)
[2] Brengos T., Trnková V.: The $${{\(\backslash\)mathcal {HS}} = {\(\backslash\)mathcal {SH}}}$$ problem for coalgebras. Algebra Universalis 63, 283–302 (2010) · Zbl 1220.03011
[3] Gumm H.P.: Elements of the general theory of coalgebras. LUATCS 99, Rand Afrikaans University, Johannesburg (1999)
[4] Gumm H.P., Schröder T.: Types and coalgebraic structure. Algebra Universalis 53, 229–252 (2005) · Zbl 1086.08002
[5] Gumm, H. P.: From T-coalgebras to filter structures and transtion systems. In: Algebra and Coalgebra in Computer Science (CALCO 2005). Lecture Notes in Computer Science, vol. 3629, pp. 194–212. Springer (2005). · Zbl 1151.18001
[6] Jech, T.: Set Theory. The Third Millenium Edition, Revised and Expanded. Springer Monographs in Mathematics (2002).
[7] Pultr, A., Trnková, V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland and Academia Praque, Prague (1980). · Zbl 0418.18004
[8] Trnková V.: Some properties of Set-endofunctors. Commentationes Mathematicae Universitatis Carolinae 10, 323–259 (1969) · Zbl 0183.30401
[9] Trnková V.: On descriptive classification of Set-functors I. Commentationes Mathematicae Universitatis Carolinae 12, 143–174 (1971) · Zbl 0232.18004
[10] Vopěnka P., Pultr A., Hedrlín Z.: A rigid relation exists on any set. Commentationes Mathematicae Universitatis Carlinae 6, 149–155 (1965)
[11] Zmrzlina, A.: Too Many Functors - A continuation of ”The Emergence of Functors”. In: Categorical Perpectives. Trends in Mathematics, pp. 47–62. Birkhauser Verlag (2001) · Zbl 0985.18005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.