×

zbMATH — the first resource for mathematics

On factorizations of analytic operator-valued functions and eigenvalue multiplicity questions. (English) Zbl 1316.47014
Integral Equations Oper. Theory 82, No. 1, 61-94 (2015); erratum ibid. 85, No. 2, 301-302 (2016).
Summary: We study several natural multiplicity questions that arise in the context of the Birman-Schwinger principle applied to non-self-adjoint operators. In particular, we re-prove (and extend) a recent result by Y. Latushkin and A. Sukhtayev [Math. Model. Nat. Phenom. 5, No. 4, 269–292 (2010; Zbl 1193.35110)] by employing a different technique based on factorizations of analytic operator-valued functions due to J. S. Howland [J. Math. Anal. Appl. 36, 12–21 (1971; Zbl 0234.47009)]. Factorizations of analytic operator-valued functions are of particular interest in themselves and again we re-derive Howland’s results and subsequently extend them. Considering algebraic multiplicities of finitely meromorphic operator-valued functions, we recall the notion of the index of a finitely meromorphic operator-valued function and use that to prove an analog of the well-known Weinstein-Aronszajn formula relating algebraic multiplicities of the underlying unperturbed and perturbed operators. Finally, we consider pairs of projections for which the difference belongs to the trace class and relate their Fredholm index to the index of the naturally underlying Birman-Schwinger operator.

MSC:
47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)
47A68 Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators
47A55 Perturbation theory of linear operators
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Amrein, W.O.; Sinha, K.B., On pairs of projections in a Hilbert space, Linear Algebra Appl., 208, 425-435, (1994) · Zbl 0805.46024
[2] Aronszajn, N.; Brown, R.D., Finite-dimensional perturbations of spectral problems and variational approximation methods for eigenvalue problems. part I. finite-dimensional perturbations, Stud. Math., 36, 1-76, (1970) · Zbl 0203.45202
[3] Avron, J.; Seiler, R.; Simon, B., The index of a pair of projections, J. Funct. Anal., 120, 220-237, (1994) · Zbl 0822.47033
[4] Beyn, W.-J.; Latushkin, Y.; Rottmann-Matthes, J., Finding eigenvalues of holomorphic Fredholm operator pencils using boundary value problems and contour integrals, Integr. Equ. Oper. Theory, 78, 155-211, (2014) · Zbl 1318.47021
[5] Birman M.Sh.: On the spectrum of singular boundary-value problems. Mat. Sb. (N.S.) 55(97), 125-174 (1961) (Russian). (Engl. transl. in Am. Math. Soc. Transl., Ser. 2, 53, 23-80) (1966) · Zbl 0851.30029
[6] Birman, M.Sh.; Solomyak, M.Z., Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations, in estimates and asymptotics for discrete spectra of integral and differential equations (leningrad, 1989-1990), Adv. Sov. Math., 7, 1-55, (1991) · Zbl 0749.35026
[7] Birman, M.Sh.; Yafaev, D.R., The spectral shift function. the work of M. G. Krein and its further development, St. Petersb. Math. J., 4, 833-870, (1993)
[8] Böttcher, A.; Spitkovsky, I.M., A gentle guide to the basics of two projections theory, Lin. Algebra Appl., 432, 1412-1459, (2010) · Zbl 1189.47073
[9] Davis, C., Separation of two linear subspaces, Acta Sci. Math. Szeged., 19, 172-187, (1958) · Zbl 0090.32603
[10] Edmunds D.E., Evans W.D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1989) · Zbl 0664.47014
[11] Effros, E., Why the circle is connected: an introduction to quantized topology, Math. Intell., 11, 27-35, (1989) · Zbl 0673.46043
[12] Gesztesy, F.; Holden, H., A unified approach to eigenvalues and resonances of Schrödinger operators using Fredholm determinants, J. Math. Anal. Appl., 123, 181-198, (1987) · Zbl 0622.35049
[13] Gesztesy, F.; Latushkin, Y.; Makarov, K.A., Evans functions, Jost functions, and Fredholm determinants, Arch. Rat. Mech. Anal., 186, 361-421, (2007) · Zbl 1134.34004
[14] Gesztesy, F.; Latushkin, Y.; Mitrea, M.; Zinchenko, M., Nonselfadjoint operators, infinite determinants, and some applications, Russ. J. Math. Phys., 12, 443-471, (2005) · Zbl 1201.47028
[15] Gesztesy, F.; Latushkin, Yu.; Zumbrun, K., Derivatives of (modified) Fredholm determinants and stability of standing and traveling waves, J. Math. Pures Appl., 90, 160-200, (2008) · Zbl 1161.47058
[16] Gohberg I., Goldberg S., Kaashoek M.A.: Classes of Linear Operators, Vol. I, Operator Theory: Advances and Applications, vol. 49. Birkhäuser, Basel (1990) · Zbl 0745.47002
[17] Gohberg I., Leiterer J.: Holomorphic Operator Functions of One Variable and Applications, Operator Theory: Advances and Applications, vol. 192. Birkhäuser, Basel (2009) · Zbl 1182.47014
[18] Gohberg, I.C.; Sigal, E.I., An operator generalizations of the logarithmic residue theorem and the theorem of rouché, Math. USSR. Sbornik, 13, 603-625, (1971) · Zbl 0254.47046
[19] Halmos, P.R., Two subspaces, Trans. Am. Math. Soc., 144, 381-389, (1969) · Zbl 0187.05503
[20] Howland, J.S., On the Weinstein-Aronszajn formula, Arch. Rat. Mech. Anal., 39, 323-339, (1970) · Zbl 0225.47013
[21] Howland, J.S., Simple poles of operator-valued functions, J. Math. Anal. Appl., 36, 12-21, (1971) · Zbl 0234.47009
[22] Kalton, N., A note on pairs of projections, Bol. Soc. Mat. Mexicana (3), 3, 309-311, (1997) · Zbl 0909.47006
[23] Kato T.: Notes on projections and perturbation theory, Technical Report No. 9, University of California, Berkeley, (unpublished) (1955) · Zbl 0885.30028
[24] Kato, T., Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162, 258-279, (1966) · Zbl 0139.31203
[25] Kato T.: Perturbation Theory for Linear Operators, corr. printing of the 2nd ed. Springer, Berlin (1980) · Zbl 0435.47001
[26] Klaus, M., Some applications of the Birman-Schwinger principle, Helv. Phts. Acta., 55, 49-68, (1982)
[27] Klaus, M.; Simon, B., Coupling constant thresholds in nonrelativistic quantum mechanics. I. short-range two-body case, Ann. Phys., 130, 251-281, (1980) · Zbl 0455.35112
[28] Konno, R.; Kuroda, S.T., On the finiteness of perturbed eigenvalues, J. Fac. Sci., Univ. Tokyo, Sec. I, 13, 55-63, (1966) · Zbl 0149.10203
[29] Kuroda, S.T., On a generalization of the Weinstein-Aronszajn formula and the infinite determinant, Sci. Papers Coll. Gen. Educ. Univ. Tokyo, 11, 1-12, (1961) · Zbl 0099.10003
[30] Latushkin, Y.; Sukhtayev, A., The algebraic multiplicity of eigenvalues and the Evans function revisited, Math. Model. Nat. Phenom., 5, 269-292, (2010) · Zbl 1193.35110
[31] López-Gómez J., Mora-Corral C.: Algebraic Multiplicity of Eigenvalues of Linear Operators, Operator Theory: Advances and Applications, vol. 177. Birkhäuser, Basel (2007) · Zbl 1144.47001
[32] Magnus, R., On the multiplicity of an analytic operator-valued function, Math. Scand., 77, 108-118, (1995) · Zbl 0851.30029
[33] Magnus, R., The spectrum and eigenspaces of a meromorphic operator-valued function, Proc. R. Soc. Edinb., 127, 1027-1051, (1997) · Zbl 0885.30028
[34] Markus A.S.: Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Monographs, vol. 71. American Mathematical Society, Providence (1988) · Zbl 0678.47005
[35] Müller, J.; Strohmaier, A., The theory of Hahn meromorphic functions, a holomorphic Fredholm theorem, and its applications, Anal. PDE, 7, 745-770, (2014) · Zbl 1319.30038
[36] Newton, R.G., Bounds on the number of bound states for the Schrödinger equation in one and two dimensions, J. Oper. Theory, 10, 119-125, (1983) · Zbl 0527.35062
[37] Pushnitski, A., The Birman-Schwinger principle on the essential spectrum, J. Funct. Anal., 261, 2053-2081, (2011) · Zbl 1244.47014
[38] Rauch, J., Perturbation theory of eigenvalues and resonances of Schrödinger Hamiltonians, J. Funct. Anal., 35, 304-315, (1980) · Zbl 0432.35013
[39] Reed M., Simon B.: Methods of Modern Mathematical Physics. I: Functional Analysis, revised and enlarged edition. Academic Press, New York (1980)
[40] Reed M., Simon B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York (1978) · Zbl 0401.47001
[41] Ribaric, M.; Vidav, I., Analytic properties of the inverse \(A\)(\(z\))\^{−1} of an analytic linear operator valued function \(A\)(\(z\)), Arch. Rat. Mech. Anal., 32, 298-310, (1969) · Zbl 0174.18002
[42] Schechter M.: Principles of Functional Analysis, Graduate Studies in Mathematics, vol. 36, 2nd edn. American Mathematical Society, Providence (2002) · Zbl 0211.14501
[43] Schwinger, J., On the bound states of a given potential, Proc. Natl. Acad. Sci. (USA), 47, 122-129, (1961)
[44] Setô, N., Bargmann’s inequalities in spaces of arbitrary dimensions, Publ. RIMS, Kyoto Univ., 9, 429-461, (1974) · Zbl 0276.35013
[45] Simon B.: Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, Princeton (1971) · Zbl 0232.47053
[46] Simon, B., On the absorption of eigenvalues by continuous spectrum in regular perturbation problems, J. Funct. Anal., 25, 338-344, (1977) · Zbl 0363.47014
[47] Sinha, K., Index theorems in quantum mechanics, Math. Newsl., 19, 195-203, (2010) · Zbl 1214.81087
[48] Steinberg, S., Meromorphic families of compact operators, Arch. Rat. Mech. Anal., 31, 372-379, (1968) · Zbl 0167.43002
[49] Weidmann J.: Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics, vol. 68. Springer, New York (1980) · Zbl 0434.47001
[50] Weinstein A., Stenger W.: Methods of Intermediate Problems for Eigenvalues. Academic Press, New York (1972) · Zbl 0291.49034
[51] Wolf, F., Analytic perturbation of operators in Banach spaces, Math. Ann., 124, 317-333, (1952) · Zbl 0046.12402
[52] Yafaev D.R.: Mathematical Scattering Theory, Transl. Math. Monographs, vol. 105. American Mathematical Society, Providence (1992) · Zbl 0761.47001
[53] Yafaev, D.R., Perturbation determinants, the spectral shift function, trace identities, and all that, Funct. Anal. Appl., 41, 217-236, (2007) · Zbl 1222.47072
[54] Yafaev D.R.: Mathematical Scattering Theory. Analytic Theory, Math. Surveys and Monographs, vol. 158. American Mathematical Society, Providence (2010) · Zbl 1197.35006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.