×

zbMATH — the first resource for mathematics

Some totally real embeddings of three-manifolds. (English) Zbl 0586.32027
Let \(\Omega \subset {\mathbb{C}}^ 3\) be an open subset, \(h: \Omega \to {\mathbb{C}}^ a \)holomorphic function and \(\rho: \Omega\to{\mathbb{R}}^ a\) \(C^ k\)-function \((k\geq 1)\) such that \(dh\wedge d\bar h\wedge d\rho\) does not vanish on \(M=\{x\in \Omega | h(x)=\rho (x)=0\}.\)
The main result is: There exists a small \(C^ 1\)-perturbation \(\tilde M\) of M such that \(\tilde M\) is a totally real submanifold of \({\mathbb{C}}^ 3.\)
Moreover \(\tilde M\) has a rather explicit form. The result is a conseqence of a theorem of M.L. Gromov [Math. USSR Izv. 7(1973), 329-343 (1974; Zbl 0281.58004)]. As an application, certain totally real embeddings in \({\mathbb{C}}^ 3\) of quotients of \(S^ 3\) are shown to exist. The case of \(S^ 3\) itself was treated by P. Ahern and W. Rudin [Proc. Am. Math. Soc. 94, 460-462 (1985; Zbl 0567.32006)].
Reviewer: N.Mihalache

MSC:
32V40 Real submanifolds in complex manifolds
57R40 Embeddings in differential topology
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] AHERN, P., RUDIN, W.: A totally real embedding ofS 3 into \(\mathbb{C}\)3. Preprint
[2] CARTAN, H.: Quotient d’un espace analytique par un groupe d’automorphismes.Algebraic Geometry and Topology, a Symposium in honor of S. Lefschetz, 90–102 (1957); or OeuvresII,51, 789–811
[3] GROMOV, M.L.: Convex integration of differential relations, I. Math.USSR Izvestija 7, 329–343 (1973) · Zbl 0281.58004 · doi:10.1070/IM1973v007n02ABEH001940
[4] KLEIN, F.:Lectures on the Icosahedron and the Solution of Equations of fifth Degree. London: K. Paul 1913
[5] NOETHER, E.: Der Endlichkeitssatz der Invarianten endlicher Gruppen.Math Ann. 77, 89–92 (1916) · JFM 45.0198.01 · doi:10.1007/BF01456821
[6] SPRINGER, T.: Lectures on Invariant Theory.Springer Lecture Notes in Mathematics 585, Berlin-Heidelberg-New York: Springer-Verlag 1977 · Zbl 0346.20020
[7] STOUT, E.L., ZAME, W.R.: A Stein manifold topologically but not holomorphically equivalent to a domain in \(\mathbb{C}\) N . To appear inAdv. Math. · Zbl 0589.32026
[8] STOUT, E.L., ZAME, W.R.: Totally real imbeddings and the universal covering spaces of domains of holomorphy: Some examples.Manuscripta Math. 50 (1985) · Zbl 0584.32039
[9] WOLF, J.A.:Spaces of Constant Curvature. New York: McGraw Hill 1967 · Zbl 0162.53304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.