×

zbMATH — the first resource for mathematics

Bogolyubov’s operator \(S(g)\) for some two-dimensional models of quantum field theory. (English) Zbl 0413.47010
MSC:
47A40 Scattering theory of linear operators
46N99 Miscellaneous applications of functional analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Glimm and A. Jaffe, Phys. Rev.,176, 1945 (1968). · Zbl 0177.28203 · doi:10.1103/PhysRev.176.1945
[2] J. Glimm and A. Jaffe, Ann. Phys.,60, 321 (1970). · Zbl 1229.81087 · doi:10.1016/0003-4916(70)90495-1
[3] L. Rosen, Commun. Pure Appl. Math.,24, 417 (1971). · doi:10.1002/cpa.3160240306
[4] V. F. Vreshchinski, Teor. Mat. Fiz.,11, 331 (1972).
[5] Yu. A. Semenov, Preprint ITP-72-156E, Kiev (1972).
[6] I. D. Chueshov, Preprint ITF-74-154R [in Russian], Kiev (1974).
[7] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1966). · Zbl 0148.12601
[8] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin (1971).
[9] S. S. Ivanov, D. Ya. Petrina, and A. L. Rebenko, Teor. Mat. Fiz.,19, 37 (1974).
[10] Ju. M. Berezanskii, Expansion in Eigenfunctions of Self-Adjoint Operators (Translations of Mathematical Monographs, Vol. 17), A. M. S. Providence (1968).
[11] B. Simon and R. Hoegh-Krohn, J. Funct. Anal.,9, 121 (1972). · Zbl 0241.47029 · doi:10.1016/0022-1236(72)90008-0
[12] R. Hoegh-Krohn, Commun. Math. Phys.,21, 244 (1971). · doi:10.1007/BF01647122
[13] J. Glimm and A. Jaffe, in: Statistical Mechanics and QFT, Les Houches Lecture 1970, Gordon and Breach (1971). · Zbl 0191.27005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.