×

zbMATH — the first resource for mathematics

Uniform equivalence between Banach spaces. (English) Zbl 0401.57026

MSC:
57N17 Topology of topological vector spaces
54E15 Uniform structures and generalizations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Israel Aharoni, Every separable metric space is Lipschitz equivalent to a subset of \?\(^{+}\)\(_{0}\), Israel J. Math. 19 (1974), 284 – 291. , https://doi.org/10.1007/BF02757727 Patrice Assouad, Remarques sur un article de Israel Aharoni sur les prolongements lipschitziens dans \?\(_{0}\) (Israel J. Math. 19 (1974), 284 – 291), Israel J. Math. 31 (1978), no. 1, 97 – 100. · Zbl 0387.54003 · doi:10.1007/BF02761384 · doi.org
[2] Czesław Bessaga and Aleksander Pełczyński, Selected topics in infinite-dimensional topology, PWN — Polish Scientific Publishers, Warsaw, 1975. Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58]. · Zbl 0304.57001
[3] P. Enflo, Uniform homeomorphisms between Banach spaces, Séminaire Maurey-Schwartz (1975 – 1976), Espaces, \?^\?, applications radonifiantes et géométrie des espaces de Banach, Exp. No. 18, Centre Math., École Polytech., Palaiseau, 1976, pp. 7. · Zbl 0341.46009
[4] Joram Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1964), 263 – 287. · Zbl 0195.42803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.