×

zbMATH — the first resource for mathematics

Singular integral operators on curves with corners. (English) Zbl 0445.45025

MSC:
45P05 Integral operators
47Gxx Integral, integro-differential, and pseudodifferential operators
45E05 Integral equations with kernels of Cauchy type
47A53 (Semi-) Fredholm operators; index theories
47L10 Algebras of operators on Banach spaces and other topological linear spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Calderón, A. P., Calderón, C. P., Fabes, E., Riviere, N. M. and Jodeit, M.: Applications of the Cauchy integral on Lipschitz curves. Bulletin AMS84, 287 - 290 (1978). · Zbl 0389.30025
[2] Carleman, T.: Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken, Dissertation, Uppsala 1916. · JFM 46.0732.04
[3] Costabel, M.: A contribution to the theory of singular integral equations with Carleman shift. Integral Equations Oper. Theory2 (1979), 12 - 24. · Zbl 0409.45002
[4] Daniljuk, I. I.: Irregular boundary value problems in the plane (russian). Moscow, Nauka (1975).
[5] Dudučava, R. V.: On bisingular integral operators with discontinuous coefficients. Math. USSR Sbornik30, 515 - 537 (1976). · Zbl 0388.47030
[6] Gohberg, I. C. and Krupnik, N. Ja.: Singular integral operators with piecewise continuous coefficients and their symbols. Math. USSR Izvestija5, 955 - 979 (1971). · Zbl 0248.47025
[7] Gohberg, I. and Krupnik, N.: Einführung in the Theorie der eindimensionalen singulären Integraloperatoren. Basel, Birkhäuser Verlag (1979), (Russ. Original: Kishinov, Stiinca (1973)). · Zbl 0413.47040
[8] Krupnik, N. Ja. and Njaga, V.I.: Singular integral operators in the case of a nonsmooth contour (russian). Matem. Issl. Kishinov 10, 144 - 164 (1975).
[9] Muschelischwili, N. I.: Singuläre Integralgleichungen. Berlin, Akademie-Verlag (1965). · Zbl 0123.29701
[10] Wendland, W.L.: Elliptic Systems in the Plane. London, Pitman (1979). · Zbl 0396.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.