Chmutov, S. V. Monodromy groups of singularities of functions of two variables. (English) Zbl 0493.32010 Funct. Anal. Appl. 15, 48-52 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page MSC: 32Sxx Complex singularities 32S05 Local complex singularities 14B05 Singularities in algebraic geometry Keywords:monodromy groups; Dynkin digram PDF BibTeX XML Cite \textit{S. V. Chmutov}, Funct. Anal. Appl. 15, 48--52 (1981; Zbl 0493.32010) Full Text: DOI References: [1] V. I. Arnol’d, ”Remark on the branching of hyperelliptic integrals as functions of parameters,” Funkts. Anal. Prilozhen.,2, No. 3, 1-4 (1968). · Zbl 0174.45203 · doi:10.1007/BF01075356 [2] V. I. Arnol’d, ”Critical points of smooth functions and their normal forms,” Usp. Mat. Nauk,30, No. 5, 3-65 (1975). [3] N. A’Campo, ”Le group de monodromie du deploiement des singularites isolees de coubes planes,” Math. Ann.,213, No. 1, 1-32 (1975). · Zbl 0316.14011 · doi:10.1007/BF01883883 [4] N. A’Campo, ”Tresses, monodromie et le groupe sympletique,” Commun. Math. Helv.,54, No. 2, 318-327 (1979). · Zbl 0441.32004 · doi:10.1007/BF02566275 [5] A. N. Varchenko, ”On branching of multiple integrals depending on parameters,” Funkts. Anal. Prilozhen.,3, No. 4, 79-80 (1969). · doi:10.1007/BF01078281 [6] S. M. Gusein-Zade, ”Monodromy groups of isolated singularities,” Usp. Mat. Nauk,22, No. 2, 23-65 (1977). · Zbl 0379.32013 [7] S. M. Gusein-Zade, ”Intersection matrices for certain singularities of functions of two variables,” Funkts. Anal. Prilozhen.,8, No. 1, 11-15 (1974). · Zbl 0304.14009 [8] A. M. Gabriélov, ”Intersection matrices for certain singularities,” Funkts. Anal. Prilozhen.,7, No. 3, 18-32 (1973). [9] A. M. Gabrielov, ”Polar curves and intersection matrices of singularities,” Invent. Math.,54, 15-22 (1979). · Zbl 0421.32011 · doi:10.1007/BF01391174 [10] B. Wajnryb, ”Monodromy of curve singularities,” Math. Ann.,246, No. 2, 141-154 (1980). · Zbl 0418.14017 · doi:10.1007/BF01420166 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.