zbMATH — the first resource for mathematics

Finite groups with standard component of type \(\widehat{\Omega_8^+(2)}\). (English) Zbl 0514.20012
20D05 Finite simple groups and their classification
20D06 Simple groups: alternating groups and groups of Lie type
Full Text: DOI
[1] N. Bourbaki, Groups of Lie Algebras [Russian translation], Mir, Moscow (1972). · Zbl 0249.22001
[2] R. Carter, ”Classes of conjugate elements in Weil’s group,” in: Seminar on Algebraic Groups [Russian translation], Mir, Moscow (1973).
[3] M. Aschbacher and G. M. Seitz, ”Involutions in Chevalley groups over fields of even order,” Nagoya Math. J.,64, 1–91 (1976). · Zbl 0359.20014
[4] M. Aschbacher, ”A characterization of Chevalley groups over fields of odd order,” Ann. Math.,106, 353–398 and 399–468 (1977). · Zbl 0393.20011
[5] M. Aschbacher and G. M. Seitz, ”On finite groups with standard component of known type,” Osaka Math. J.,13, 439–482 (1976). · Zbl 0374.20015
[6] G. Glauberman, ”Central elements in core-free groups,” J. Algebra,4, 403–420 (1966). · Zbl 0145.02802
[7] D. Gorenstein and K. Harada, ”Finite groups whose 2-subgroups are generated by at most 4 elements,” Mem. Am. Math. Soc.,147 (1974). · Zbl 0353.20008
[8] B. Huppert, Endliche Gruupen I [in German], Springer-Verlag, Berlin (1967). · Zbl 0217.07201
[9] J. H. Walter, ”The characterization of finite groups with abelian Sylow 2-subgroups,” Ann. Math.,89, No. 3, 405–514 (1969). · Zbl 0184.04605
[10] L. Finkelstein, ”Finite groups with a standard component whose centralizer has cyclic Sylow 2-subgroups,” Proc. Am. Math. Soc.,62, No. 2, 237–241 (1977). · Zbl 0416.20011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.