×

\(L^p\) boundedness of some rough operators with different weights. (English) Zbl 1031.42013

If \(\Omega\) is a homogeneous function of degree zero on \(\mathbb{R}^n\) (\(n \geq 2\)), then the maximal operator \(M_{\Omega}\) and the singular integral \(T_{\Omega}\) are defined, respectively, by \[ M_{\Omega} f(x) = \sup_{r>0} \frac{1}{r^n}\int_{|x-y |<r} |\Omega (x-y) ||f(y) |dy, \]
\[ T_{\Omega}f(x)= \text{ p.v. }\int_{R^n} \frac{\Omega (x-y)}{ |x-y |^n} f(y)dy. \] J. Duoandikoetxea [Trans. Am. Math. Soc. 336, 869-880 (1993; Zbl 0770.42011)] and D. K. Watson [Duke Math. J. 60, 389-399 (1990; Zbl 0711.42025)] proved the following:
If \(\Omega \in L^q(S^{n-1}), q >1\), then \(M_{\Omega}\) is bounded on weighted spaces \(L^p (w)\) for \(1<p<\infty\) where \(w\) is in the Muckenhoupt weights class.
If \(\Omega \in L^q(S^{n-1}), q >1\), and \(\Omega\) has average zero on \(S^{n-1}\), then \(T_{\Omega}\) is bounded on weighted spaces \(L^p (w)\) for \(1<p<\infty\).
The authors prove that \(M_{\Omega}\) and \(T_{\Omega}\) are bounded from \(L^p (v)\) to \(L^p (u)\) for some suitable weights pair \((u,v)\) defined by E. T. Sawyer [Stud. Math. 75, 1-11 (1982; Zbl 0508.42023)].

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
47G10 Integral operators
42B25 Maximal functions, Littlewood-Paley theory
PDFBibTeX XMLCite
Full Text: DOI