zbMATH — the first resource for mathematics

Phase analysis in the problem of scattering by a radial potential. (English) Zbl 0616.47010
Translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 147, 155-178 (Russian) (1985; Zbl 0588.47011).
47A40 Scattering theory of linear operators
35P20 Asymptotic distributions of eigenvalues in context of PDEs
81U99 Quantum scattering theory
Full Text: DOI
[1] L. D. Landau and E. M. Lifshits, Quantum Mechanics, Pergamon (1977). · Zbl 0714.70004
[2] W. Hunziker, ?Potential scattering at high energies,? Helv. Phys. Acta,36, 838?856 (1963).
[3] V. S. Buslaev, ?Trace formulas and certain asymptotic estimates of the kernel of the resolvent for the Schrödinger operator in three-dimensional space,? in: Problems of Mathematical Physics, I, Leningrad State Univ., Leningrad (1966), pp. 82?101.
[4] A. Jensen, ?The scattering cross section and its Born approximation at high energies, Helv. Phys. Acta,53, 398?403 (1980).
[5] K. Yajima, ?The quasiclassical limit of scattering amplitude. I. Finite range potentials,? Preprint, Tokyo (1984).
[6] V. Enss and B. Simon, ?Finite total cross sections in nonrelativistic quantum mechanics,? Commun. Math. Phys.,76, 177?209 (1980). · Zbl 0471.35065 · doi:10.1007/BF01212825
[7] W. O. Amrein and D. B. Pearson, ?A time-dependent approach to the total scattering cross section,? J. Phys. A: Math. Gen.,12, No. 9, 1469?1492 (1979). · Zbl 0415.47006 · doi:10.1088/0305-4470/12/9/014
[8] V. V. Babikov, The Method of Phase Functions in Quantum Mechanics [in Russian], Moscow (1968).
[9] F. Kalodzhero (F. Calogero), The Method of Phase Functions in Potential Scattering Theory [Russian translation], Moscow (1972).
[10] M. Reed and B. Simon, Methods of Modern Mathematical Physics. III. Scattering Theory, Academic Press, New York (1979). · Zbl 0405.47007
[11] M. Sh. Birman and D. R. Yafaev, ?The asymptotics of the spectrum of the S-matrix in potential scattering,? Dokl. Akad. Nauk SSSR,255, No. 5, 1085?1087 (1980). · Zbl 0501.35064
[12] M. Sh. Birman and D. R. Yafaev, ?The asymptotic behavior of the spectrum of the scattering matrix,? J. Sov. Math.,25, No. 1 (1984). · Zbl 0531.35062
[13] D. R. Yafaev, ?On the resonance scattering by a negative potential,? J. Sov. Math.,32, No. 5 (1986). · Zbl 0582.35109
[14] M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, Nat. Bureau of Standards, Washington (1964).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.