zbMATH — the first resource for mathematics

Diffusive limit of a kinetic model for cometary flows. (English) Zbl 1181.82055
A kinetic equation with a relaxation time model for wave-particle collisions is considered, motivated by the analysis of cometary flows and cosmic-ray transport in astrophysical plasmas [L. L. Williams and J. R. Jokipii, Astrophys. J. 417, 725–734 (1993)]. Similarly to the BGK-model of gas dynamics, it involves a projection onto the set of equilibrium distributions isotropic around the velocity. This equation depends nonlinearly on the moments of the distribution function. In the two first sections of the paper, the authors provide a short and useful presentation of the relevant properties of this equation and on the mathematical results obtained about it since its proposal in 1996. In Section 3, the macroscopic limit is formally computed using diffusive and low Mach number scaling. The result is a generalization of the incompressible Navier-Stokes equations, where the momentum equations are coupled to a diffusive equation for an energy distribution function. In Section 4, an entropy inequality and some other properties of the limiting system are discussed, and a simplified version is obtained by a moment approximation around a local Maxwellian energy distribution. The resulting system can be related to a low Mach number model with constant viscosity of fluid mechanics, which already appeared in the literature [P. Embid, Commun. Partial Differ. Equ. 12, 1227–1283 (1987; Zbl 0632.76075)]. The authors discuss the difficulties that hinder to extend to general energy distributions the weak existence theory known for this equation [P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 2: Compressible models. Oxford: Clarendon Press (1998; Zbl 0908.76004)]. Finally, in Section 5, for a linearized version around global equilibrium corresponding to Stokes flow for the divergence-free set of the velocity and a decoupled nonlocal equation for the energy distribution, an existence result for initial value problems is proved by using the entropy inequality derived in the paper.

82C40 Kinetic theory of gases in time-dependent statistical mechanics
82D05 Statistical mechanical studies of gases
Full Text: DOI
[1] Brezis, H.: Analyse Fonctionelle. Dunod, Paris (1999), pp. 218–219
[2] Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994) · Zbl 0813.76001
[3] Degond, P., Lemou, M.: On the viscosity and thermal conduction of fluids with multivalued internal energy. Eur. J. Mech. B Fluids 20, 303–327 (2001) · Zbl 1011.76008 · doi:10.1016/S0997-7546(00)01095-5
[4] Degond, P., Lemou, M.: Turbulence models for incompressible fluids derived from kinetic theory. J. Math. Fluid Mech. 4, 257–284 (2002) · Zbl 1007.35067 · doi:10.1007/s00021-002-8545-8
[5] Degond, P., Peyrard, P.F.: Un modèle de collisions ondes-particules en physique des plasmas: application à la dynamique des gaz. C.R. Acad. Sci. Paris 323, 209–214 (1996) · Zbl 0858.76098
[6] Degond, P., Lopez, J.L., Peyrard, P.F.: On the macroscopic dynamics induced by a model wave-particle collision operator. J. Contin. Mech. Therm. 10, 153–178 (1998) · Zbl 0917.76077 · doi:10.1007/s001610050087
[7] Degond, P., Lopez, J.L., Poupaud, F., Schmeiser, C.: Existence of solutions of a kinetic equation modelling cometary flows. J. Stat. Phys. 96, 361–376 (1999) · Zbl 0964.82050 · doi:10.1023/A:1004584719071
[8] Degond, P., Lemou, M., Lòpez, J.-L.: A kinetic description of anisotropic fluids with multivalued internal energy. Eur. J. Mech. B Fluids 22, 487–509 (2003) · Zbl 1051.76504 · doi:10.1016/S0997-7546(03)00060-8
[9] Dolbeault, J., Markowich, P.A., Oelz, D., Schmeiser, C.: Nonlinear diffusion as limit of kinetic equations with relaxation collision kernels. Arch. Ration. Mech. Anal. 186, 133–158 (2007) · Zbl 1148.76047 · doi:10.1007/s00205-007-0049-5
[10] Earl, J., Jokipii, J.R., Morfill, G.: Cosmic ray viscosity. Astrophys. J. 331, L91 (1988) · doi:10.1086/185242
[11] Embid, P.: Well-posedness of the nonlinear equations for zero Mach number combustion. Commun. Partial Differ. Equ. 12, 1227–1284 (1987) · Zbl 0632.76075 · doi:10.1080/03605308708820526
[12] Evans, L.C.: Partial Differential Equations. Am. Math. Soc., Providence (1998) · Zbl 0902.35002
[13] Fellner, K., Schmeiser, C.: Classification of equilibrium solutions of the cometary flow equation and explicit solutions of the Euler equations for monatomic ideal gases. J. Stat. Phys. 129, 493–507 (2007) · Zbl 1131.82037 · doi:10.1007/s10955-007-9396-8
[14] Fellner, K., Poupaud, F., Schmeiser, C.: Existence and convergence to equilibrium of a kinetic model for cometary flows. J. Stat. Phys. 114, 1481–1499 (2004) · Zbl 1072.82028 · doi:10.1023/B:JOSS.0000013956.08390.b1
[15] Fellner, K., Miljanovic, V., Schmeiser, C.: Convergence to equilibrium for the linearized cometary flow equation. Transp. Theory Stat. Phys. 35, 109–136 (2006) · Zbl 1129.82036 · doi:10.1080/00411450600901755
[16] Lions, P.-L.: Mathematical Topics in Fluid Mechanics, vol. 2. Oxford University Press, Oxford (1998) · Zbl 0908.76004
[17] Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions. Appl. Math. Sci., vol. 53. Springer, Berlin (1984) · Zbl 0537.76001
[18] Saint-Raymond, L.: Incompressible hydrodynamic limits for a kinetic model of waves-particles interaction. J. Asymptot. Anal. 19, 149–183 (1999) · Zbl 0927.35085
[19] Williams, L.L., Jokipii, J.R.: Viscosity and inertia in cosmic-ray transport: effects of an average magnetic field. Astrophys. J. 371, 639–647 (1991) · doi:10.1086/169930
[20] Williams, L.L., Jokipii, J.R.: A single-fluid, self-consistent formulation of fluid dynamics and particle transport. Astrophys. J. 417, 725–734 (1993) · doi:10.1086/173351
[21] Williams, L.L., Schwadron, N., Jokipii, J.R., Gombosi, T.I.: A unified transport equation for both cosmic rays and thermal particles. Astrophys. J. 405, L79–L81 (1993) · doi:10.1086/186770
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.