×

zbMATH — the first resource for mathematics

Smith theory for algebraic varieties. (English) Zbl 1069.57020
The version of Smith theory due to J. P. May [Proc. Am. Math. Soc. 101, 728–730 (1987; Zbl 0635.57020)] is generalized to algebraic varieties over fields of arbitrary characteristic. The main tools are Bredon cohomology and coefficient systems.
MSC:
57S17 Finite transformation groups
14F20 Étale and other Grothendieck topologies and (co)homologies
55M35 Finite groups of transformations in algebraic topology (including Smith theory)
PDF BibTeX XML Cite
Full Text: DOI EMIS EuDML arXiv
References:
[1] A Borel, Seminar on transformation groups, Annals of Mathematics Studies 46, Princeton University Press (1960) · Zbl 0091.37202
[2] S Bouc, Résolutions de foncteurs de Mackey, Proc. Sympos. Pure Math. 63, Amer. Math. Soc. (1998) 31 · Zbl 0897.19001
[3] G E Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics 34, Springer (1967) · Zbl 0162.27202
[4] G E Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics 46, Academic Press (1972) · Zbl 0246.57017
[5] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982) · Zbl 0584.20036
[6] L Illusie, Théorie de Brauer et caractéristique d’Euler-Poincaré (d’après P. Deligne), Astérisque 82, Soc. Math. France (1981) 161 · Zbl 0496.14013
[7] C U Jensen, H Lenzing, Model-theoretic algebra with particular emphasis on fields, rings, modules, Algebra, Logic and Applications 2, Gordon and Breach Science Publishers (1989) · Zbl 0728.03026
[8] J P May, A generalization of Smith theory, Proc. Amer. Math. Soc. 101 (1987) 728 · Zbl 0635.57020 · doi:10.2307/2046679
[9] J Rickard, Finite group actions and étale cohomology, Inst. Hautes Études Sci. Publ. Math. (1994) · numdam:PMIHES_1994__80__81_0
[10] P Symonds, The Bredon cohomology of subgroup complexes, J. Pure Appl. Algebra 199 (2005) 261 · Zbl 1067.18013 · doi:10.1016/j.jpaa.2004.12.010
[11] T tom Dieck, Transformation groups, de Gruyter Studies in Mathematics 8, Walter de Gruyter & Co. (1987) · Zbl 0611.57002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.