zbMATH — the first resource for mathematics

Ext and local cohomology modules of face rings of simplicial posets. (English) Zbl 1395.13023
Let \(P\) be a simplicial poset with vertex set \(V=\{x_1,\dots,x_n\}\) and let \(\mathrm{supp}(z)=\{i: x_i\preceq z\}\) denote the support of an element \(z\in P\). Define \(A=k[x_1,\dots, x_n]\), let \(\mathfrak{m}\) be the irrelevant ideal \((x_1,\dots, x_n)\), and let \({\mathfrak{m}}_{\ell}\) be the ideal \((x_1^{\ell},\dots, x_n^{\ell})\). Lastly, let \(A_P\) be the face ring of \(P\); consider \(A_P\) as a \(\mathbb{Z}^n\)-graded \(A\)-module.
The first result is an extension of M. Miyazaki’s calculation of the graded pieces of the Ext-modules of a Stanley-Reisner ring [Manuscr. Math. 63, No. 2, 245–254 (1989; Zbl 0671.13014)]:
Theorem 3.1. Let \(P\) be a simplicial poset with vertex set \(V\) , and let \(\alpha\in\mathbb{Z}^n\). Set \(B=\{i: -\ell<{\alpha}_i< 0\}, C=\{i : {\alpha}_i=-\ell\}\), and \(D=\{i: {\alpha}_i>0\}\). If \(-\ell\leq{\alpha}_i\) for all \(i\), then \[ \mathrm{Ext}^i_A(A/{\mathfrak{m}}_{\ell},A_P )_{\alpha}\cong\bigoplus_{\mathrm{supp}(z)=B\cup D}\tilde{H}^{i-|B|-|C|-1}([\hat{0},z_D]\times Ik_P(z)_{V\setminus C}) \] and \(\mathrm{Ext}^i_A(A/{\mathfrak{m}}_{\ell},A_P)_{\alpha}=0\) otherwise. In particular, if \(D\neq\emptyset\) then \(\mathrm{Ext}^i_A(A/{\mathfrak{m}}_{\ell},A_P)_{\alpha}=0\).
The second main contribution is:
Theorem 4.4. Let \(\alpha=(\alpha_1,\dots,\alpha_n)\in\mathbb{Z}^n\). Then \[ H_{\mathfrak{m}}^i(A_P)_{\alpha}\cong\bigoplus_{supp(w)=\{j: \alpha_j\neq 0\}}H^{i-1}(P,\mathrm{cost}_P(w)) \] if \(\alpha\in\mathbb{Z}_{\leq 0}^n\) and \(H_{\mathfrak{m}}^i(A_P)_{\alpha}=0\) otherwise. Under these isomorphisms, the \(A\)-module structure of \(H_{\mathfrak{m}}^i(A_P)\) is given as follows. Let \(\gamma=\alpha+\deg(x_j)\). If \(\alpha_j<-1\), then \(\cdot x_j: H_{\mathfrak{m}}^i(A_P)_{\alpha}\longrightarrow H_{\mathfrak{m}}^i(A_P)_{\gamma}\) corresponds to the direct sum of identity maps
\[ \bigoplus_{\mathrm{supp}(w)=\{j: \alpha_j\neq 0\}}H^{i-1}(P,\mathrm{cost}_P(w))\longrightarrow \bigoplus_{\mathrm{supp}(w)=\{j: \alpha_j\neq 0\}}H^{i-1}(P,\mathrm{cost}_P(w)). \] If \(\alpha_j=-1\), then \(\cdot x_j\) corresponds to the direct sum of maps \[ \bigoplus_{\mathrm{supp}(w)=\{j: \alpha_j\neq 0\}}H^{i-1}(P,\mathrm{cost}_P(w))\longrightarrow \bigoplus_{\mathrm{supp}(z)=\{j: \gamma_j\neq 0\}}H^{i-1}(P,\mathrm{cost}_P(z)) \] induced by the inclusions of pairs \((P,\mathrm{cost}_P(w\setminus\{x_j\}))\longrightarrow(P,\mathrm{cost}_P(w))\). If \(\alpha_j\geq 0\), then \(\cdot x_j\) is the zero map.

13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
13D45 Local cohomology and commutative rings
13D07 Homological functors on modules of commutative rings (Tor, Ext, etc.)
Full Text: DOI arXiv
[1] Brun, Morten; Bruns, Winfried; Römer, Tim, Cohomology of partially ordered sets and local cohomology of section rings, Adv. Math., 208, 1, 210-235, (2007) · Zbl 1116.13013
[2] Björner, A., Posets, regular CW complexes and Bruhat order, European J. Combin., 5, 1, 7-16, (1984) · Zbl 0538.06001
[3] Browder, Jonathan; Klee, Steven, A classification of the face numbers of Buchsbaum simplicial posets, Math. Z., 277, 3-4, 937-952, (2014) · Zbl 1303.52005
[4] (Bisztriczky, T.; McMullen, P.; Schneider, R.; Ivić Weiss, A., Polytopes: Abstract, Convex and Computational, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 440, (1994), Kluwer Academic Publishers Group Dordrecht)
[5] Brun, Morten; Römer, Tim, On algebras associated to partially ordered sets, Math. Scand., 103, 2, 169-185, (2008) · Zbl 1165.13007
[6] Duval, Art M., Free resolutions of simplicial posets, J. Algebra, 188, 1, 363-399, (1997) · Zbl 0882.06004
[7] Gräbe, Hans-Gert, The canonical module of a Stanley-Reisner ring, J. Algebra, 86, 1, 272-281, (1984) · Zbl 0533.13003
[8] Garsia, A. M.; Stanton, D., Group actions of Stanley-Reisner rings and invariants of permutation groups, Adv. Math., 51, 2, 107-201, (1984) · Zbl 0561.06002
[9] Hatcher, Allen, Algebraic topology, (2002), Cambridge University Press Cambridge · Zbl 1044.55001
[10] Herzog, Jürgen; Hibi, Takayuki, Monomial ideals, Graduate Texts in Mathematics, vol. 260, (2011), Springer-Verlag London, Ltd. London · Zbl 1206.13001
[11] Iyengar, Srikanth B.; Leuschke, Graham J.; Leykin, Anton; Miller, Claudia; Miller, Ezra; Singh, Anurag K.; Walther, Uli, Twenty-four hours of local cohomology, Graduate Studies in Mathematics, vol. 87, (2007), American Mathematical Society Providence, RI · Zbl 1129.13001
[12] Lundell, A. T.; Weingram, S., The topology of CW complexes, The University Series in Higher Mathematics, vol. VIII, (1969), Van Nostrand Reinhold Company New York, 216 pp · Zbl 0207.21704
[13] Masuda, Mikiya, h-vectors of gorenstein^⁎ simplicial posets, Adv. Math., 194, 2, 332-344, (2005) · Zbl 1063.05010
[14] Miyazaki, Mitsuhiro, Characterizations of Buchsbaum complexes, Manuscripta Math., 63, 2, 245-254, (1989) · Zbl 0671.13014
[15] Miller, Ezra; Novik, Isabella; Swartz, Ed, Face rings of simplicial complexes with singularities, Math. Ann., 351, 4, 857-875, (2011) · Zbl 1236.13017
[16] Murai, Satoshi, Face vectors of simplicial cell decompositions of manifolds, Israel J. Math., 195, 1, 187-213, (2013) · Zbl 1286.05184
[17] Novik, Isabella; Swartz, Ed, Socles of Buchsbaum modules, complexes and posets, Adv. Math., 222, 6, 2059-2084, (2009) · Zbl 1182.52010
[18] Novik, Isabella; Swartz, Ed, Face numbers of pseudomanifolds with isolated singularities, Math. Scand., 110, 2, 198-222, (2012) · Zbl 1255.13014
[19] Reisner, Gerald Allen, Cohen-Macaulay quotients of polynomial rings, Adv. Math., 21, 1, 30-49, (1976) · Zbl 0345.13017
[20] Sawaske, Connor, Almost buchsbaumness of some rings arising from complexes with isolated singularities, J. Commut. Algebra, (2018), in press · Zbl 1395.13023
[21] Sawaske, Connor, Stanley-Reisner rings of Buchsbaum complexes with a free action by an abelian group, (June 2017), arXiv e-prints
[22] Schenzel, Peter, On the number of faces of simplicial complexes and the purity of Frobenius, Math. Z., 178, 1, 125-142, (1981) · Zbl 0472.13012
[23] Stanley, Richard P., f-vectors and h-vectors of simplicial posets, J. Pure Appl. Algebra, 71, 2-3, 319-331, (1991) · Zbl 0727.06009
[24] Stanley, Richard P., Combinatorics and commutative algebra, Progress in Mathematics, vol. 41, (1996), Birkhäuser Boston, Inc. Boston, MA · Zbl 0838.13008
[25] Stückrad, Jürgen; Vogel, Wolfgang, Buchsbaum rings and applications, Mathematische Monographien, vol. 21, (1986), VEB Deutscher Verlag der Wissenschaften Berlin, An interaction between algebra, geometry, and topology · Zbl 0606.13017
[26] Yanagawa, Kohji, Dualizing complex of the face ring of a simplicial poset, J. Pure Appl. Algebra, 215, 9, 2231-2241, (2011) · Zbl 1219.13014
[27] Yanagawa, Kohji, Higher Cohen-Macaulay property of squarefree modules and simplicial posets, Proc. Amer. Math. Soc., 139, 9, 3057-3066, (2011) · Zbl 1230.13018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.