zbMATH — the first resource for mathematics

Extensions of locally finite André systems. (Erweiterungen lokal endlicher André-Systeme.) (German) Zbl 0783.51003
If \((F,+,\cdot)\) is a field then \(\kappa:F\backslash\{0\}=F^*\to\operatorname{Aut}(F,+,\cdot)\); \(x\to\kappa_ x\) is called a coupling if \(\forall a,b\in F\backslash\{0\}:\kappa_ a\circ\kappa_ b=\kappa_{a\cdot\kappa_ a(b)}\). Then \((F,+,\circ)\) with \(a\circ b:=a\cdot\kappa_ a(b)\) is a nearfield, called Dickson nearfield [cf. e.g. H. Wähling, Theorie der Fastkörper (1987; Zbl 0669.12014)]. This can be generalized: Let \(K\leq F\) and \(\varphi:F^*\to GL(F,K)\); \(x\to\varphi_ x\) such that \(\varphi_ 1=id\) and \(\forall a,b\in F^*\), \(\varphi_ a(1)=1\) and \(\exists_ 1x\in F^*:x\varphi_ x(a)=b\). Here \(F^ \varphi:=(F,+,\circ)\) with \(a\circ b:=a\cdot\varphi_ a(b)\) is only a quasifield.
The author continues his studies on André-systems [cf. Arch. Math. 58, No. 5, 514-520 (1992; Zbl 0725.12006) and J. Geom. 41, No. 1/2, 79-93 (1991; Zbl 0734.51003)] and considers here the particular case that \((Q,K)\) is an extension of locally finite fields (an algebraic structure is called locally finite, if any finite subset is contained in a finite substructure) and that \(\varphi=\psi\circ N\) has a factorization where \(N:Q^*\to(K^*,\cdot)\) is a homomorphism and \(\psi:N(Q^*)\to\operatorname{Aut}(Q,K)\) a map with \(\psi(1)=id\). Then he calls \(\varphi\) and André-derivation and \(Q^ \varphi\) an André-system. He studies the possibility to extend a finite André-system to a countable locally finite André-system. Using Steinitz-numbers he gives a complete survey on the extensibility of finite André-derivations \(\varphi_ 0:Q^*_ 0\to\operatorname{Aut}(Q_ 0,K_ 0)\) to André-derivations \(\varphi:Q^*\to\operatorname{Aut}(Q,K)\) where \(Q\) is firstly a finite extension field of \(Q_ 0\) (Theorem 1.3) and secondly a locally finite extension field (Theorem 2.1), and on the cardinality of nonisomorphic quasifields \(Q^ \varphi\) (Theorem 2.3).
51A25 Algebraization in linear incidence geometry
51A35 Non-Desarguesian affine and projective planes
51A40 Translation planes and spreads in linear incidence geometry
16Y30 Near-rings
12K05 Near-fields
12K99 Generalizations of fields
Full Text: DOI
[1] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press New York-San Francisco-London 1970. · Zbl 0209.05503
[2] H. Kiechle, Algebraisch abgeschlossene Körper, Staatsexamensarbeit München 1985.
[3] H. Kiechle, Der Kern einer automorphen Ableitung und eine Anwendung auf normale Teilkörper verallgemeinerter André-Systeme, Arch. Math. (erscheint demnächst). · Zbl 0725.12006
[4] H. Kiechle, Lokal endliche André-Systeme, J. Geom.41 (1991), 79–93. · Zbl 0734.51003 · doi:10.1007/BF01258510
[5] S. Lang, Algebra, 2nd Edition, Addison-Wesley Reading Massachusetts 1967.
[6] H. Lüneburg, Translation Planes, Springer-Verlag Berlin-Heidelberg-New York 1980.
[7] E. Steinitz, Algebraische Theorie der Körper, neu herausgegeben vonR. BAER undH. HASSE, Chelsea Publishing Company, New York 1950. · Zbl 0045.01301
[8] S.J. Tillman, The Multiplicative Group of Absolutely Algebraic Fields in Characteristicp, Proc. Amer. Math. Soc.23 (1969), 601–604. · Zbl 0188.11102
[9] H. Wahling, Theorie der Fastkörper, Thales-Verlag Essen 1987.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.