zbMATH — the first resource for mathematics

Ample vector bundles on singular varieties. (English) Zbl 0842.14010
Let \(X\) be an \(n\)-dimensional projective variety having at most log-terminal singularities and let \(E\) be an ample vector bundle of rank \(r\) on \(X\). The author proves that:
(1) If \(r= n+1\) and \(c_1 (X)= c_1 (E)\) then \((X, E) \simeq (\mathbb{P}^n, {\mathcal O}_P (1)^{n+ 1})\); and
(2) If \(r\geq n+1\) then \(K_X+ c_1 (E)\) is ample unless \((X, E)\simeq (\mathbb{P}^n, {\mathcal O}_P (1)^{n+ 1})\).
If \(X\) is smooth, the results where already known [cf. Y.-G. Ye and Q. Zhang, Duke Math. J. 60, No. 3, 671-687 (1990; Zbl 0709.14011) and T. Peternell [Math. Z. 205, No. 3, 487-490 (1990; Zbl 0726.14034)]. However, the argument used in the smooth case do not work in the singular one.

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
14B05 Singularities in algebraic geometry
Full Text: DOI EuDML
[1] [E] R. Elkik, Rationalité des singularités canoniques. Invent. Math.64 (1981), 1–6 · Zbl 0498.14002 · doi:10.1007/BF01393930
[2] [F1] T. Fujity, On polarized manifolds whose adjoint bundles are not semipositive. Advanced Studies in Pure Mathematics10, Algebraic Geometry, Sendai (1987), 161–178
[3] [F2] T. Fujita, On adjoint bundle of ample vector bundles. Proc. Conference in Algebraic Geometry, Bayreuth (1990)
[4] [H] R. Hartshorne, Algebraic Geometry. Springer 1977
[5] [K] Y. Kawamata, On the length of an extremal rational curve. Invent. Math.105 (1991), 609–611 · Zbl 0751.14007 · doi:10.1007/BF01232281
[6] [KMM] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem. Advanced Studies in Pure Mathematics 10, Algebraic Geometry, Sendai (1985)
[7] [L] R. Lazarsfeld, Some applications of the theory of positive vector bundles. Springer Lecture Notes in Mathematics 1092 (1984) · Zbl 0547.14009
[8] [M] S. Mori, Threefolds whose canonical bundles ar enot numerically effective. Ann. of Math.166 (1982), 133–176 · Zbl 0557.14021 · doi:10.2307/2007050
[9] [Ma] H. Maeda, Ramification divisors for branched coverings of \(\mathbb{P}\)n. Math. Ann.288 (1990), 195–199 · Zbl 0692.14006 · doi:10.1007/BF01444529
[10] [OSS] C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective space. Birkauser, Boston, 1980 · Zbl 0438.32016
[11] [P1] T. Peternell, A characterization ofP n by vector bundles. Math. Z.205 (1990), 487–490 · Zbl 0726.14034 · doi:10.1007/BF02571257
[12] [P2] T. Peternell, Ample vector bundles on Fano manifolds. International J. Math.2 (1991), 311–322 · Zbl 0744.14009 · doi:10.1142/S0129167X91000181
[13] [R] M. Reid, Canonical 3-folds. Géométrie Algébrique Angers, Sijthoff & Noordhoff, Alphen aan den Rijn (1979), pp 273–310
[14] [W] J.A. Wiśniewski, Length of extremal rays and generalized adjunction. Math. Z.200 (1989), 409–427 · Zbl 0668.14004 · doi:10.1007/BF01215656
[15] [Y-Z] Y.G. Ye, Q. Zhang, ON ample vector bundles whose adjunction bundles are not numerically effective. Duke Math. J.60 (1990), 671–688 · Zbl 0709.14011 · doi:10.1215/S0012-7094-90-06027-2
[16] [Z] Q. Zhang, On a conjecture of Lanteri-Sommese, preprint (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.