Lee, Youngae; Lin, Chang-Shou; Yang, Wen Existence of bubbling solutions without mass concentration. (Existence de solutions bouillonnantes sans concentration de masse.) (English. French summary) Zbl 1426.35104 Ann. Inst. Fourier 69, No. 2, 895-940 (2019). Reviewer: Peter B. Gilkey (Eugene) MSC: 35J15 35B44 82D55 PDF BibTeX XML Cite \textit{Y. Lee} et al., Ann. Inst. Fourier 69, No. 2, 895--940 (2019; Zbl 1426.35104) Full Text: DOI arXiv
Lee, Youngae; Lin, Chang-Shou Uniqueness of bubbling solutions with collapsing singularities. (English) Zbl 1426.35004 J. Funct. Anal. 277, No. 2, 522-557 (2019). Reviewer: Michael Jung (Dresden) MSC: 35A02 53A30 35J15 58J05 PDF BibTeX XML Cite \textit{Y. Lee} and \textit{C.-S. Lin}, J. Funct. Anal. 277, No. 2, 522--557 (2019; Zbl 1426.35004) Full Text: DOI
Lee, Youngae; Lin, Chang-Shou; Tarantello, Gabriella; Yang, Wen Sharp estimates for solutions of mean field equations with collapsing singularity. (English) Zbl 1401.35119 Commun. Partial Differ. Equations 42, No. 10, 1549-1597 (2017). Reviewer: Mariana Vega Smit (Essen) MSC: 35J91 58J05 35B44 PDF BibTeX XML Cite \textit{Y. Lee} et al., Commun. Partial Differ. Equations 42, No. 10, 1549--1597 (2017; Zbl 1401.35119) Full Text: DOI
Lin, Chang-Shou; Tarantello, Gabriella When “blow-up” does not imply “concentration”: a detour from Brézis-Merle’s result. (Lorsque blow-up ne signifie pas “concentration” : un détour par rapport au résultat de Brézis-Merle.) (English. French summary) Zbl 1387.35310 C. R., Math., Acad. Sci. Paris 354, No. 5, 493-498 (2016). MSC: 35J91 35B44 35B45 35R01 PDF BibTeX XML Cite \textit{C.-S. Lin} and \textit{G. Tarantello}, C. R., Math., Acad. Sci. Paris 354, No. 5, 493--498 (2016; Zbl 1387.35310) Full Text: DOI
Bao, Jun; Wang, Lihe; Zhou, Chunqin Blow-up analysis for solutions to Neumann boundary value problem. (English) Zbl 1353.35139 J. Math. Anal. Appl. 418, No. 1, 142-162 (2014). Reviewer: Christian Stinner (Darmstadt) MSC: 35J25 35B44 PDF BibTeX XML Cite \textit{J. Bao} et al., J. Math. Anal. Appl. 418, No. 1, 142--162 (2014; Zbl 1353.35139) Full Text: DOI
Cassani, Daniele; Ruf, Bernhard; Tarsi, Cristina Best constants in a borderline case of second-order Moser type inequalities. (English) Zbl 1194.46048 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 1, 73-93 (2010). MSC: 46E35 35B65 26D10 PDF BibTeX XML Cite \textit{D. Cassani} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 1, 73--93 (2010; Zbl 1194.46048) Full Text: DOI
Bartolucci, D. A compactness result for periodic multivortices in the electroweak theory. (English) Zbl 1138.58308 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 53, No. 2, 277-297 (2003). MSC: 58E50 35B45 35J60 PDF BibTeX XML Cite \textit{D. Bartolucci}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 53, No. 2, 277--297 (2003; Zbl 1138.58308) Full Text: DOI
Bartolucci, D.; Tarantello, G. The Liouville equation with singular data: a concentration-compactness principle via a local representation formula. (English) Zbl 1247.35032 J. Differ. Equations 185, No. 1, 161-180 (2002). MSC: 35J60 35J20 PDF BibTeX XML Cite \textit{D. Bartolucci} and \textit{G. Tarantello}, J. Differ. Equations 185, No. 1, 161--180 (2002; Zbl 1247.35032) Full Text: DOI
Ye, Dong; Zhou, Feng A generalized two dimensional Emden-Fowler equation with exponential nonlinearity. (English) Zbl 1077.35048 Calc. Var. Partial Differ. Equ. 13, No. 2, 141-158 (2001). MSC: 35J65 35B40 35J60 PDF BibTeX XML Cite \textit{D. Ye} and \textit{F. Zhou}, Calc. Var. Partial Differ. Equ. 13, No. 2, 141--158 (2001; Zbl 1077.35048) Full Text: DOI
Li, YanYan; Shafrir, Itai Blow-up analysis for solutions of \(-\Delta u = V e^ u\) in dimension two. (English) Zbl 0842.35011 Indiana Univ. Math. J. 43, No. 4, 1255-1270 (1994). Reviewer: M.Tarabek (Carbondale) MSC: 35B40 35J60 PDF BibTeX XML Cite \textit{Y. Li} and \textit{I. Shafrir}, Indiana Univ. Math. J. 43, No. 4, 1255--1270 (1994; Zbl 0842.35011) Full Text: DOI
Wang, Shixiao An example of a blow-up sequence for \(-\Delta{}u = V(x)e^ u\). (English) Zbl 0754.35011 Differ. Integral Equ. 5, No. 5, 1111-1114 (1992). Reviewer: S.P.Banks (Sheffield) MSC: 35B35 35J05 PDF BibTeX XML Cite \textit{S. Wang}, Differ. Integral Equ. 5, No. 5, 1111--1114 (1992; Zbl 0754.35011)