×

zbMATH — the first resource for mathematics

Existence conditions for unknown input functional observers. (English) Zbl 1278.93057
Summary: This article presents necessary and sufficient conditions for the existence and design of an unknown input Functional observer. The existence of the observer can be verified by computing a nullspace of a known matrix and testing some matrix rank conditions. The existence of the observer does not require the satisfaction of the observer matching condition (i.e. Equation (16) in [M. Hou and P. C. Müller, IEEE Trans. Autom. Control 37, No. 6, 871–875 (1992; Zbl 0775.93021)], is not limited to estimating scalar functionals and allows for arbitrary pole placement. The proposed observer always exists when a state observer exists for the unknown input system, and furthermore, the proposed observer can exist even in some instances when an unknown input state observer does not exist.

MSC:
93B07 Observability
93E10 Estimation and detection in stochastic control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/00207179608921833 · Zbl 0844.93020 · doi:10.1080/00207179608921833
[2] DOI: 10.1109/9.855556 · Zbl 0972.93008 · doi:10.1109/9.855556
[3] Darouach M, in Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems (2004)
[4] Edwards , C . 2004 . A Comparison of Sliding Mode and Unknown Input Observers for Fault Reconstruction . Proceedings of the 43rd IEEE Conference Decision and Control . 2004 . pp. 5279 – 5282 . Atlantis , Bahamas
[5] Fernando , T , Jennings , L and Trinh , H . 2011 . Generality of Functional Observer Structures . Proceedings of the 50th IEEE Conference on Decision and Control and ECC . 2011 . pp. 4000 – 4004 . Orlando, FL , USA · doi:10.1109/CDC.2011.6160360
[6] DOI: 10.1111/j.1934-6093.2007.tb00434.x · doi:10.1111/j.1934-6093.2007.tb00434.x
[7] DOI: 10.1109/TAC.2010.2042761 · Zbl 1368.93044 · doi:10.1109/TAC.2010.2042761
[8] DOI: 10.1016/0005-1098(90)90018-D · Zbl 0713.93052 · doi:10.1016/0005-1098(90)90018-D
[9] DOI: 10.1109/9.256351 · Zbl 0775.93021 · doi:10.1109/9.256351
[10] DOI: 10.1080/00207178208922642 · Zbl 0487.93014 · doi:10.1080/00207178208922642
[11] Larroque B, in Proceedings of the 17Th World Congress, The International Federation of Automatic Control pp 7332– (2008)
[12] Lungu M, International Journal of Control (2012)
[13] O’Reilly J, Observers for Linear Systems (1983)
[14] DOI: 10.1080/00207178808906239 · Zbl 0659.93007 · doi:10.1080/00207178808906239
[15] DOI: 10.1016/j.automatica.2010.10.027 · Zbl 1209.93025 · doi:10.1016/j.automatica.2010.10.027
[16] DOI: 10.1109/TAC.1981.1102566 · Zbl 0478.93030 · doi:10.1109/TAC.1981.1102566
[17] DOI: 10.1016/0005-1098(92)90024-A · doi:10.1016/0005-1098(92)90024-A
[18] DOI: 10.1080/002071799219986 · Zbl 0953.93012 · doi:10.1080/002071799219986
[19] DOI: 10.1007/978-3-642-24064-5 · doi:10.1007/978-3-642-24064-5
[20] DOI: 10.1080/00207170600905337 · Zbl 1124.93013 · doi:10.1080/00207170600905337
[21] Zarei J, Mathematical and Computational Applications 16 pp 31– (2011) · doi:10.3390/mca16010031
[22] DOI: 10.1016/S0005-1098(02)00269-8 · Zbl 1036.93061 · doi:10.1016/S0005-1098(02)00269-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.