×

zbMATH — the first resource for mathematics

A low-dissipation DG method for the under-resolved simulation of low Mach number turbulent flows. (English) Zbl 1442.65270
Summary: In recent years the use of high-order Discontinuous Galerkin (DG) methods for the under-resolved direct numerical simulations (uDNS) of turbulent flows has received special attention. The suitability of the approach for this kind of applications is related to the dissipation and dispersion proprieties of the scheme: while the dispersion errors are small over a broad range of frequencies, a relevant dissipation error mainly acts at the smallest under-resolved scales, resembling a high frequency filter. Nevertheless, it was recognized [D. Flad and G. Gassner, J. Comput. Phys. 350, 782–795 (2017; Zbl 1380.76019); G. Mengaldo et al., Comput. Fluids 169, 349–364 (2018; Zbl 1410.76103)] that the choice of the interface convective numerical flux strongly affects this dissipation behaviour and ultimately the success of the uDNS approach. In this regard, the excess of numerical dissipation caused by some upwind numerical convective fluxes must be avoided, in particular when dealing with low-speed flows, since this behaviour is exacerbated approaching the incompressibility limit. Fixes for the excess of numerical dissipation of these schemes have been proposed by several authors in the context of different numerical methods, see for example [J. M. Weiss and W. A. Smith, AIAA J. 33, No. 11, 2050–2057 (1995; Zbl 0849.76072)]. In this work a simple modification of the dissipation term of the low Mach preconditioned Roe scheme proposed by Weiss and Smith is considered. The aim is to reduce further the amount of numerical dissipation with the intent of improving the results of uDNS. A spatial DG discretization coupled with a linearly-implicit Rosenbrock-type time integrator is here considered as a numerical framework perfectly suited for the assessment and comparison of different numerical flux functions. Results on canonical turbulent flow problems as the Taylor-Green vortex and the flow in a straight sided channel are presented. The improved accuracy of the proposed flux function is demonstrated. The new low-dissipation flux can be useful also in the context of standard, lower order, finite volume methods.
MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
Software:
RODAS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hartmann, R., Error estimation and adjoint based refinement for an adjoint consistent dg discretisation of the compressible euler equations, Int. J. Comput. Sci. Math., 1, 2/3/4, 207-220 (2007) · Zbl 1185.65209
[2] Moura, R. C.; Mengaldo, G.; Peiró, J.; Sherwin, S. J., On the eddy-resolving capability of high-order discontinuous galerkin approaches to implicit les/under-resolved dns of euler turbulence, J. Comput. Phys., 330, 615-623 (2017) · Zbl 1378.76036
[3] Mengaldo, G.; Moura, R. C.; Giralda, B.; Peiró, J.; Sherwin, S. J., Spatial eigensolution analysis of discontinuous Galerkin schemes with practical insights for under-resolved computations and implicit LES, Comput. & Fluids, 169, 349-364 (2018) · Zbl 1410.76103
[4] D. Flad G. Gassner, On the use of kinetic energy preserving dg-schemes for large eddy simulation, J. Comput. Phys., 350, 782-795 (2017) · Zbl 1380.76019
[5] Weiss, J. M.; Smith, W. A., Preconditioning applied to variable and constant density flows, AIAA J., 33, 11, 2050-2057 (1995) · Zbl 0849.76072
[6] Nigro, A.; Renda, S.; De Bartolo, C.; Hartmann, R.; Bassi, F., A high-order accurate discontinuous galerkin finite element method for laminar low mach number flows, Internat. J. Numer. Methods Fluids, 72, 1, 43-68 (2013)
[7] Beck, A. D.; Gassner, G. J.; Munz, C.-D., On the effect of flux functions in discontinuous galerkin simulations of underresolved turbulence, (Azaïez, M.; El Fekih, H.; Hesthaven, J., Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012. Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012, Lecture Notes in Computational Science and Engineering, vol. 95 (2012), Springer: Springer Cham)
[9] Bassi, F.; De Bartolo, C.; Hartmann, R.; Nigro, A., A discontinuous galerkin method for inviscid low mach number flows, J. Comput. Phys., 228, 11, 3996-4011 (2009) · Zbl 1273.76265
[10] Gottlieb, J. J.; Groth, C. P.T., Assessment of riemann solvers for unsteady one-dimensional inviscid flows of perfect gases, J. Comput. Phys., 78, 2, 437-458 (1988) · Zbl 0657.76064
[11] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H. T.; Kroll, N.; May, G.; Persson, P.-O.; van Leer, B.; Visbal, M., High-order CFD methods: Current status and perspective, Internat. J. Numer. Methods Fluids, 72, 8, 811-845 (2013)
[12] Moser, R. D.; Kim, J.; Mansour, N. N., Direct numerical simulation of turbulent channel flow up to \(R e_\tau = 590\), Phys. Fluids, 11, 4, 943-945 (1999) · Zbl 1147.76463
[13] Dolejsi, V.; Kus, P., Adaptive backward difference formula-Discontinuous Galerkin finite element method for the solution of conservation laws, Internat. J. Numer. Methods Engrg., 73, 12, 1739-1766 (2008) · Zbl 1159.76349
[14] Persson, P.-O.; Peraire, J., Newton-GMRES preconditioning for Discontinuous Galerkin discretizations of the Navier-Stokes equations, SIAM J. Sci. Comput., 30, 6, 2709-2733 (2008) · Zbl 1362.76052
[15] Nigro, A.; Ghidoni, A.; Rebay, S.; Bassi, F., Modified extended BDF scheme for the discontinuous Galerkin solution of unsteady compressible flows, Internat. J. Numer. Methods Fluids, 76, 9, 549-574 (2014)
[16] Nigro, A.; De Bartolo, C.; Bassi, F.; Ghidoni, A., Up to sixth-order accurate A-stable implicit schemes applied to the Discontinuous Galerkin discretized Navier-Stokes equations, J. Comput. Phys., 276, 136-162 (2014) · Zbl 1349.76247
[17] Schütz, J.; Seal, D.; Jaust, A., Implicit multiderivative collocation solvers for linear partial differential equations with discontinuous galerkin spatial discretizations, J. Sci. Comput., 73, 1145-1163 (2017) · Zbl 1381.65078
[18] Nigro, A.; De Bartolo, C.; Crivellini, A.; Bassi, F., Second derivative time integration methods for discontinuous Galerkin solutions of unsteady compressible flows, J. Comput. Phys., 350, 493-517 (2017) · Zbl 1380.76131
[19] Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; Ghidoni, A.; Massa, F., On the development of an implicit high-order Discontinuous Galerkin method for DNS and implicit LES of turbulent flows, Eur. J. Mech. B/Fluids, 55, 2, 367-379 (2016) · Zbl 1408.76360
[20] Pazner, W.; Persson, P.-O., Stage-parallel fully implicit Runge-Kutta solvers for discontinuous Galerkin fluid simulations, J. Comput. Phys., 335, 700-717 (2017) · Zbl 1375.76164
[21] Blom, D. S.; Birken, P.; Bijl, H.; Kessels, F.; Meister, A.; van Zuijlen, A. H., A comparison of rosenbrock and esdirk methods combined with iterative solvers for unsteady compressible flows, Adv. Comput. Math., 42, 6, 1401-1426 (2016) · Zbl 1388.76166
[22] Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; Ghidoni, A.; Nigro, A.; S., Rebay., Time integration in the discontinuous galerkin code migale-unsteady problems, (Kroll, N.; Hirsch, C.; Bassi, F.; Johnston, C.; Hillewaert, K., IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach. IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 128 (2015)), 205-230
[24] Bassi, F.; Botti, L.; Colombo, A.; Ghidoni, A.; Massa, F., Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady flows, Comput. & Fluids, 118, 305-320 (2015) · Zbl 1390.76833
[25] Hauke, G.; Hughes, T. J.R., A comparative study of different sets of variables for solving compressible and incompressible flows, Comput. Methods Appl. Mech. Engrg., 153, 1-2, 1-44 (1998) · Zbl 0957.76028
[26] Dolejsi, V.; Feistauer, M., Discontinuous galerkin method analysis and applications to compressible flow, (Springer Series in Computational Mathematics (2015), Springer International Publishing) · Zbl 1401.76003
[27] Di Pietro, D. A.; Ern, A., Mathematical aspects of discontinuous Galerkin methods, (Mathematiques et Applications (2012), Springer-Verlag) · Zbl 1231.65209
[28] Hesthaven, J. S.; Warburton, T., Nodal discontinuous galerkin methods, (Algorithms, Analysis, and Applications (2008), Springer-Verlag) · Zbl 1134.65068
[29] Cohen, G.; Pernet, S., Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations. Scientific Computation (2017), Springer · Zbl 1360.65233
[30] Bassi, F.; Botti, L.; Colombo, A.; Di Pietro, D. A.; Tesini, P., On the flexibility of agglomeration based physical space discontinuous galerkin discretizations, J. Comput. Phys., 231, 1, 45-65 (2012) · Zbl 1457.65178
[31] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations, J. Comput. Phys., 131, 2, 267-279 (1997) · Zbl 0871.76040
[32] Spiteri, R. J.; Ruuth, S. J., A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal., 40, 2, 469-491 (2002) · Zbl 1020.65064
[33] Di, G. A., RODAS5(4), méthodes de Rosenbrock d’ordre 5(4) adaptées aux problèmes différentiels-algébriques (1992), University of Geneva: University of Geneva Switzerland, (MSc Mathematics thesis; Faculty of Science)
[34] Hairer, E.; Wanner, G., Solving ordinary differential equations ii, stiff and differential-algebraic problems, (Springer Series in Computational Mathematics (2000))
[36] Botti, L.; Colombo, A.; Bassi, F., h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems, J. Comput. Phys., 347, 382-415 (2017) · Zbl 1380.65251
[38] Nigro, A.; De Bartolo, C.; Hartmann, R.; Bassi, F., Discontinuous Galerkin solution of preconditioned Euler equations for very low Mach number flows, Internat. J. Numer. Methods Fluids, 63, 4, 449-467 (2010) · Zbl 1423.76265
[39] Roe, P. L., Characteristic based schemes for the euler equations, Annu. Rev. Fluid Mech., 18, 337-365 (1986) · Zbl 0624.76093
[40] Guillard, H.; Murrone, A., On the behavior of upwind schemes in the low mach number limit. ii. godunov type schemes, Comput. Fluids, 33, 4, 655-675 (2004) · Zbl 1049.76040
[41] Nigro, A., Discontinuous Galerkin Methods for inviscid low Mach number flows (2007), University of Calabria, Also available as DLR-IB 124-2008/1, DLR, 2008
[42] Gottlieb, S.; Shu, C. W., Total variation diminishing Runge-Kutta scheme, Math. Comp., 67, 1, 73-85 (1998) · Zbl 0897.65058
[43] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comp., 52, 186, 411-435 (1989) · Zbl 0662.65083
[44] Carton de Wiart, C.; Hillewaert, K.; Duponcheel, M.; Winckelmans, G., Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number, Internat. J. Numer. Methods Fluids, 74, 7, 469-493 (2014)
[45] Gassner, G. J.; Beck, A. D., On the accuracy of high-order discretizations for underresolved turbulence simulations, Theor. Comput. Fluid Dyn., 27, 3-4, 221-237 (2013)
[48] Shu, C.-W.; Don, W.-S.; Gottlieb, D.; Schilling, O.; Jameson, L., Numerical convergence study of nearly incompressible, inviscid taylor-green vortex flow, J. Sci. Comput., 24, 1, 1-27 (2005) · Zbl 1161.76535
[50] Brachet, M. E.; Meiron, D. I.; Orszag, S. A.; Nickel, B. G.; Morf, R. H.; Frisch, U., Small-scale structure of the Taylor-Green Vortex, J. Fluid Mech., 130, 411-452 (1983) · Zbl 0517.76033
[51] van Rees, W. M.; Leonard, A.; Pullin, D. I.; Koumoutsakos, P., A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high reynolds numbers, J. Comput. Phys., 230, 8, 2794-2805 (2011) · Zbl 1316.76066
[52] Williamson, J. H., Low-storage Runge-Kutta schemes, J. Comput. Phys., 35, 1, 48-56 (1980) · Zbl 0425.65038
[54] Hoffmann, K. A.; Chiang, S. T., (Computational Fluid Dynamics. Computational Fluid Dynamics, Engineering Education System, Vol. I (2000))
[55] Franciolini, M.; Crivellini, A.; A. Nigro, On the efficiency of a matrix-free linearly implicit time integration strategy for high-order discontinuous galerkin solutions of incompressible turbulent flows, Comput. & Fluids, 159, 276-294 (2017) · Zbl 1390.76312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.