×

zbMATH — the first resource for mathematics

Some properties of \(F\)-harmonic maps. (English) Zbl 1281.58006
The authors investigate estimates of the Morse index for \(F\)-harmonic maps into spheres; their results partially extend those obtained in [A. El Soufi, Compos. Math. 95, No. 3, 343–362 (1995; Zbl 0924.58012)], and in [A. El Soufi and A. Jeune, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13, No. 2, 229–250 (1996; Zbl 0853.58037)] for harmonic and \(p\)-harmonic maps.

MSC:
58E20 Harmonic maps, etc.
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] M. Ara, Kodai Math. J. 22, 243 (1999). · Zbl 0941.58010 · doi:10.2996/kmj/1138044045
[2] M. Ara, HiroshimaMath. J. 31, 171 (2000).
[3] M. Ara, Illinois J.Math. 45(2), 657 (2001).
[4] P. Biard and J. Eells, Lecture in Math. 894, 1 (1981). · doi:10.1007/BFb0096222
[5] L. F. Cheung and P. F. Leung, Glasgow Math. J. 36, 77 (1994). · Zbl 0801.58011 · doi:10.1017/S0017089500030561
[6] R.W. Brockett and P. C. Park, Intern. J. RoboticsRes. 13, 1 (1994). · Zbl 05422440 · doi:10.1177/027836499401300101
[7] N. Course, New York J. Math. 13, 423 (2007).
[8] Y. J. Dai, M. Shoji, and H. Urakawa, Differ. Geom. Appl. 7, 143 (1997). · Zbl 0882.53029 · doi:10.1016/S0926-2245(96)00045-9
[9] J. Eells and L. Lemaire, Selected topics in harmonic maps, (C.B.M.S. Regional Conf. Series 50, AMS Providence, 1983). · Zbl 0515.58011
[10] A. El Soufi and S. Ilias, Math. Annalen 275, 257 (1986). · Zbl 0675.53045 · doi:10.1007/BF01458460
[11] A. El Soufi and S. Ilias, Commentarii Mathematici Helvetici 67, 167 (1992). · Zbl 0758.53029 · doi:10.1007/BF02566494
[12] A. El Soufi and A. Lejeune, C.R.A.S. 315, Serie I, 1189 (1992).
[13] A. El Soufi, Compositio Math. 85, 281 (1993).
[14] A. El Soufi, Compositio Math. 95, 343 (1995).
[15] A. El Soufi and A. Lejeune, Annales de l’I.H.P., Analyse Non Linéaire 13(2), 229 (1996). · Zbl 0853.58037 · doi:10.1016/S0294-1449(16)30103-2
[16] A. El Soufi and R. Petit, CommentariiMath. Helv. 73, 11 (1998).
[17] P. F. Leung, On the stability of harmonic maps (Lecture Notes inMath. 949, 1982)
[18] J. C. Liu, HiroshimaMath. J. 36, 221 (2006).
[19] J. Sacks and K. Uhlenbeck, Ann. ofMath. 113, 1 (1981). · Zbl 0462.58014 · doi:10.2307/1971131
[20] H. Takeuchi, Japan. J.Math. 17(2), 317 (1991). · doi:10.4099/math1924.17.317
[21] Y. L. Xin, DukeMath. J. 47(3), 609 (1980). · Zbl 0513.58019 · doi:10.1215/S0012-7094-80-04736-5
[22] K. Yano, Ann.Math. 55, 38 (1952). · Zbl 0046.15603 · doi:10.2307/1969418
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.