zbMATH — the first resource for mathematics

Exceedance probability of the integral of a stochastic process. (English) Zbl 1274.62345
Summary: Let \(X=\{X(s)\}_{s\in S}\) be an almost sure continuous stochastic process (\(S\) compact subset of \(\mathbb{R}^{d}\)) in the domain of attraction of some max-stable process, with index function constant over \(S\). We study the tail distribution of \(\int _{S} X(s)ds\), which turns out to be of generalized Pareto-type with an extra ‘spatial’ parameter (the areal coefficient from [S. G. Coles and J. A. Tawn, J. R. Stat. Soc., Ser. B 58, No. 2, 329–347 (1996; Zbl 0863.60041)]). Moreover, we discuss how to estimate the tail probability \(P(\int _{S} X(s) ds > x)\) for some high value \(x\), based on independent and identically distributed copies of \(X\). In the course we also give an estimator for the areal coefficient. We prove consistency of the proposed estimators. Our methods are applied to the total rainfall in the North Holland area; i.e. \(X\) represents in this case the rainfall over the region for which we have observations, and its integral amounts to total rainfall.
The paper has two main purposes: first to formalize and justify the results of Coles and Tawn [loc. cit.]; further we treat the problem in a nonparametric way as opposed to their fully parametric methods.

62G32 Statistics of extreme values; tail inference
62M30 Inference from spatial processes
60G70 Extreme value theory; extremal stochastic processes
Full Text: DOI
[1] Brown, B.; Resnick, S.I., Extreme values of independent stochastic processes, J. appl. probab., 14, 732-739, (1977) · Zbl 0384.60055
[2] Buishand, A.; de Haan, L.; Zhou, C., On spatial extremes; with application to a rainfall problem, Ann. appl. stat., 2, 624-642, (2008) · Zbl 1273.62258
[3] Coles, S.G.; Tawn, J.A., Modelling extremes of the areal rainfall process, J. R. statist. soc. B, 58, 329-347, (1996) · Zbl 0863.60041
[4] Cooley, D.; Nychka, D.; Naveau, Ph., Bayesian spatial modeling of extreme precipitation return levels, J. amer. statist. assoc., 102, 824-840, (2006) · Zbl 05564414
[5] de Haan, L., A spectral representation for MAX-stable processes, Ann. probab., 12, 1194-1204, (1984) · Zbl 0597.60050
[6] de Haan, L.; Ferreira, A., Extreme value theory: an introduction, (2006), Springer Boston · Zbl 1101.62002
[7] de Haan, L.; Lin, T., On convergence toward an extreme-value distribution in \(C [0, 1]\), Ann. probab., 29, 467-483, (2001) · Zbl 1010.62016
[8] de Haan, L.; Pereira, T.T., Spatial extremes: models for the stationary case, Ann. statist., 34, 146-168, (2006) · Zbl 1104.60021
[9] de Haan, L.; Rootzén, H., On the estimation of high quantiles, J. statist. plann. inference, 35, 1-13, (1993) · Zbl 0770.62026
[10] Dekkers, A.L.M.; Einmahl, J.H.J.; de Haan, L., A moment estimator for the index of an extreme-value distribution, Ann. statist., 17, 1833-1855, (1989) · Zbl 0701.62029
[11] Fawcett, L.; Walshaw, D., A hierarchical model for extreme wind speeds, Appl. stat., 55, 631-646, (2006) · Zbl 1109.62115
[12] Gelfand, A.E.; Sang, H., Hierarchical modeling for extreme values observed over space and time, Environ. ecol. stat., 16, 407-426, (2009)
[13] Giné, E.; Hahn, M.G.; Vatan, P., MAX-infinitely divisible and MAX-stable sample coninuous processes, Probab. theary related fields, 87, 139-165, (1990) · Zbl 0688.60031
[14] Hardy, G.H.; Littlewood, J.E.; Pólya, G., Inequalities, (1951), Cambridge University Press Cambridge UK · Zbl 0634.26008
[15] Kabluchko, Z.; Schlather, M.; de Haan, L., Stationary MAX-stable fields associated to negative definite functions, Ann. probab., 37, 2042-2065, (2009) · Zbl 1208.60051
[16] Samorodnitsky, G.; Taqqu, M.S., Stable non-Gaussian random processes: stochastic models with infinite variance, (1994), Chapman and Hall New York · Zbl 0925.60027
[17] R.L. Smith, 1990. Max-stable processes and spatial extremes. Unpublished notes.
[18] Stoev, S.A.; Taqqu, M.S., Extremal stochastic integral: a parallel between MAX-stable processes and \(\alpha\)-stable processes, Extremes, 8, 237-266, (2005) · Zbl 1142.60355
[19] Zhang, Z.; Smith, R.L., On the estimation and application of MAX-stable processes, J. stat. plan. infer., 140, 1135-1153, (2010) · Zbl 1181.62150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.