×

zbMATH — the first resource for mathematics

Homotopy theory of algebraic quantum field theories. (English) Zbl 1419.81026
The authors claim that algebraic quantum field theory developed to investigate quantum field theory on Lorentzian spacetime has no consensus of the description of gauge theories, which can answer what is a quantum gauge theory and how it differs from a theory without gauge symmetries. The key to address and solve these problems is to develop a generalization of algebraic quantum field theory that takes into account the higher structures which are present in gauge theories. Homotopical quantum field theory is initiated by this argument. It combines the conceptual/physical ideas of algebraic quantum field theory with modern techniques from homotopy theory, in the sense of model theory [W. G. Dwyer and J. Spalinski, in: Handbook of algebraic topology. Amsterdam: North-Holland. 73–126 (1995; Zbl 0869.55018)], or higher category theory [J. Lurie, Higher topos theory. Princeton, NJ: Princeton University Press (2009; Zbl 1175.18001)].
Smooth structure on a higher space of fields can be encoded by using the concept of a stack [the first author et al., Commun. Math. Phys. 359, No. 2, 765–820 (2018; Zbl 1423.14007)]. Its corresponding observable algebra should be e kind of higher algebra there shadows are known as BRST/BV formalism. Therefore the generalization from ordinary algebras in vector spaces to higher algebras in chain complexes is motivated by the necessity to encode and describe the higher structures of quantum gauge theories in the framework of algebraic quantum field theory.
In [the first author et al., “Operads for algebraic quantum field theory”, Preprint, arXiv:1709.08657], the authors show algebraic quantum field theories admit a description in terms of algebras over a suitable colored operad.(cf,Th,3,8 of this paper). Based on this result, the main result of this paper is to show that there exists a canonical model structure on the category of chain complex-valued algebraic quantum field theories and to explain the immense relevance of such structures both from a conceptual and from a more practical point of view.
Basic definitions and results about the model category \(\mathbf{Ch}(k)\) of chain complexes of \(k\)-modules, \(k\supseteq\mathbb{Q}\), colored operads and their homotopy theory are reviewed in §2. In [the first author et al., Preprint,loc. cit.], orthogonal category \(\bar{\mathbf{C}}=(\mathbf{C},\perp)\) is defined, where \(\mathbf{C}\) is any small category (in this paper, \(\mathbf{C}\) is the category of (Lorentzian) spacetime). This is reviewed in §3 as Definition 3.1, Then denoting \(\mathbf{dgAlg}(k)\), \(k\supseteq\mathbb{Q}\), and define \(\perp\)-commutativity of a covariant functor \(\mathbf{\mathfrak{A}}:\mathbf{C}\to \mathbf{dgAlg}(k)\) (Definition 3.3. a), the category of \(\mathbf{Ch}(k)\)-valued quantum field theory on \(\bar{\mathbf{C}}\) is defined as the full subcategory of the functor category; \[\mathbf{QFT}(\bar{\mathbf{C}})\subseteq\mathbf{dgAlg}(k)^{\mathbf{C}}, \] where objects are all \(\perp\)-commutative functors (Definition 3.2, b)). Then the description of this category in terems of algebra of colored operad is given in §3. 2 (Theorem 3.8; \(\mathbf{Alg}(\mathcal{O}_{\bar{\mathbf{C}}})\cong \mathbf{QFT}(\bar{\mathbf{C}})\), cf. [the first author et al., Preprint, loc. cit.]). From this result, the following Theorem is obtained.
Theorem 3.10. Define a morphism \(\zeta:\mathbf{\mathfrak{A}}\to \mathbf{\mathfrak{B}}\) in \(\mathbf{QFT}(\bar{\mathbf{C}}\) to be
a weak equivalence if the un derlying \(\mathbf{Ch}(k)\)-morphism of each component \(\zeta_c:\mathbf{\mathfrak{A}}(c)\to \mathbf{\mathfrak{B}}(c)\) is a quasi-isomorphism,
a fibration, if the underlying \(\mathbf{Ch}(k)\)-morphism of each component \(\zeta_c:\mathbf{\mathfrak{A}}(c)\to \mathbf{\mathfrak{B}}(c)\) is degree-wise fibration.
a cofibration if the left lifting property (cf. Remark 2.2) withrespeect to all acyclicfibrations,
These choices endow \(\mathbf{QFT}(\bar{\mathbf{C}})\) with thee structure of model categories.
Several examples of this theorem, such as coincidence of weak equivalence and the notions used in BRST/BV formalism (Example 3.12) are follows. Some technical details used in these examples are postponed to the appendix.
In §4, a \(\Sigma\)-cofibrant resolution of a colored operad \(\mathcal{O}\) is defined as an acyclic fibration \(w:\mathcal{O}_\infty\to \mathcal{O}\), \(\mathcal{O}_\infty\) is a \(\Sigma\)-covariant operad (Definition 4.1). The model category of homotopy quantum field theories of \(\bar{\mathbf{C}}\) corresponding to a \(\Sigma\)-cofibrant resolution \(w\) is denoted by \(\mathbf{QFT}_w(\bar{\mathbf{C}}\). Then it is proved for every \(\Sigma\) cofibrant resolution \(w\), there exists a Quillen equivalence \[w_!;\mathbf{QFT}_w(\bar{\mathbf{C}})\rightleftharpoons\mathbf{QFT}(\bar{\mathbf{C}}):w^\ast, \] between the model categories strict and homotopy quantum field theories on \(\bar{\mathbf{C}}\) (Theorem 4.3). Then a detailed study on the \(E\)-resolution; a \(\Sigma\)-cofibrant resolution obtained by a component-wise tensor product Barratt-Eccles \(E_\infty\)-operad, and toy models via cochain algebras on stacks, follows.
§5, the last section, provides another class of examples of homotopy quantum field theories over the resolution \(\mathcal{O}_{\bar{\mathbf{C}}}\otimes\mathcal{E}_\infty\to \mathcal{O}_{\bar{\mathbf{C}}}\). The authors say this is an improvement of construction in [the first and the second author, Commun. Math. Phys. 356, No. 1, 19–64 (2017; Zbl 1378.81080)], supplying homotopy-coherence of the construction. This construction starts with a category a fibered in groupoids \(\pi:\mathbf{D}\to \mathbf{C}\), where \(\mathbf{D}\) is a category of spacetimes with background guage fields. Taking a strict \(\mathbf{Ch}(k)\)-valued quantum field theory on the total category \(\mathbf{D}\), its underlying functor \(\mathbf{\mathfrak{A}}:\mathbf{D}\to \mathbf{Ch}'k)\) is considered. Over each spacetime \(c\in\mathbf{C}\), there exists a groupoid \(\pi^{-1}(c)\) of background fields. Then take homotopy invariants of the corresponding groupoid actions on the quantum field theory \(\mathbf{\mathfrak{A}}\). This construction is formalized in terms of a homotopy right Kan extension \(\mathbf{hoRan}_\pi\). It is shown \(\mathbf{hoRan}_\pi\in \mathbf{QFT}_w(\mathbf{C})\) is a homotopy quantum field theory on the base category \(\bar{\mathbf{C}}\) corresponding to the resolution \(w_{\bar{\mathbf{C}}}:\mathcal{O}_{\bar{\mathbf{C}}}\otimes\mathcal{E}_\infty\to \mathcal{O}_{\bar{\mathbf{C}}}\) (Theorem 5.5).
The authors say that the construction in §5 seems to be relevant to perturbative quantum gauge theory (cf. Example 5.1). From a mathematical perspective, the homotopy quantum field theory \(\mathbf{hoRan}_\pi\mathbf{\mathfrak{A}}\) admits an interpretation in terms of fiber-wise groupoid cohomology on \(\mathbf{D}\to \mathbf{C}\) with coefficients in the strict quantum field theory \(\mathbf{\mathfrak{A}}\) (cf. Remark 5.6).

MSC:
81T10 Model quantum field theories
81T05 Axiomatic quantum field theory; operator algebras
81T13 Yang-Mills and other gauge theories in quantum field theory
81T20 Quantum field theory on curved space or space-time backgrounds
18D50 Operads (MSC2010)
18G55 Nonabelian homotopical algebra (MSC2010)
55U35 Abstract and axiomatic homotopy theory in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ayala, D.; Francis, J., Factorization homology of topological manifolds, J. Topol., 8, 1045-1084, (2015) · Zbl 1350.55009
[2] Benini, M.; Schenkel, A., Quantum field theories on categories fibered in groupoids, Commun. Math. Phys., 356, 19, (2017) · Zbl 1378.81080
[3] Benini, M.; Schenkel, A.; Schreiber, U., The stack of Yang-Mills fields on Lorentzian manifolds, Commun. Math. Phys., 359, 765, (2018) · Zbl 1423.14007
[4] Benini, M.; Schenkel, A.; Szabo, RJ, Homotopy colimits and global observables in Abelian gauge theory, Lett. Math. Phys., 105, 1193, (2015) · Zbl 1386.70042
[5] Benini, M., Schenkel, A., Woike, L.: Operads for algebraic quantum field theory. arXiv:1709.08657 [math-ph] · Zbl 1406.18005
[6] Benini, M., Schenkel, A., Woike, L.: Involutive categories, colored \(\ast \)-operads and quantum field theory. arXiv:1802.09555 [math.CT] · Zbl 1406.18005
[7] Berger, C.; Fresse, B., Combinatorial operad actions on cochains, Math. Proc. Camb. Philos. Soc., 137, 135-174, (2004) · Zbl 1056.55006
[8] Berger, C.; Moerdijk, I., Axiomatic homotopy theory for operads, Comment. Math. Helv., 78, 805-831, (2003) · Zbl 1041.18011
[9] Berger, C.; Moerdijk, I.; Davydov, A. (ed.); Batanin, M. (ed.); Johnson, M. (ed.); Lack, S. (ed.); Neeman, A. (ed.), Resolution of coloured operads and rectification of homotopy algebras, No. 431, 31-58, (2007), Providence · Zbl 1134.18005
[10] Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J.: Advances in Algebraic Quantum Field Theory. Springer, Heidelberg (2015) · Zbl 1329.81022
[11] Brunetti, R.; Fredenhagen, K.; Verch, R., The generally covariant locality principle: a new paradigm for local quantum field theory, Commun. Math. Phys., 237, 31, (2003) · Zbl 1047.81052
[12] Calaque, D.; Pantev, T.; Toën, B.; Vaquié, M.; Vezzosi, G., Shifted Poisson structures and deformation quantization, J. Topol., 10, 483-584, (2017) · Zbl 1428.14006
[13] Cisinski, D-C, Locally constant functors, Math. Proc. Camb. Philos. Soc., 147, 593-614, (2009) · Zbl 1185.18013
[14] Cisinski, D-C; Moerdijk, I., Dendroidal sets and simplicial operads, J. Topol., 6, 705-756, (2013) · Zbl 1291.55005
[15] Costello, K., Gwilliam, O.: Factorization Algebras in Quantum Field Theory. New Mathematical Monographs 31, vol. 1. Cambridge University Press, Cambridge (2017) · Zbl 1377.81004
[16] Crainic, M., Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv., 78, 681-721, (2003) · Zbl 1041.58007
[17] Dougherty, J., Sameness and separability in gauge theories, Philos. Sci., 84, 1189-1201, (2017)
[18] Dugger, D., Universal homotopy theories, Adv. Math., 164, 144-176, (2001) · Zbl 1009.55011
[19] Dugger, D.; Hollander, S.; Isaksen, DC, Hypercovers and simplicial presheaves, Math. Proc. Camb. Philos. Soc., 136, 9-51, (2004) · Zbl 1045.55007
[20] Dwyer, WG; Spalinski, J.; James, IM (ed.), Homotopy theories and model categories, (1995), Amsterdam
[21] Fewster, CJ; Verch, R.; Brunetti, R. (ed.); Dappiaggi, C. (ed.); Fredenhagen, K. (ed.); Yngvason, J. (ed.), Algebraic quantum field theory in curved spacetimes, 125-189, (2015), Heidelberg · Zbl 1334.81079
[22] Fredenhagen, K.; Kastler, D. (ed.), Generalizations of the theory of superselection sectors, No. 379, (1990), Singapore
[23] Fredenhagen, K.; Araki, H. (ed.); Ito, KR (ed.); Kishimoto, A. (ed.); Ojima, I. (ed.), Global observables in local quantum physics, 41-51, (1993), Dordrecht
[24] Fredenhagen, K.; Rehren, K-H; Schroer, B., Superselection sectors with braid group statistics and exchange algebras II: geometric aspects and conformal covariance, Rev. Math. Phys., 4, 113, (1992) · Zbl 0774.46041
[25] Fredenhagen, K.; Rejzner, K., Batalin-Vilkovisky formalism in the functional approach to classical field theory, Commun. Math. Phys., 314, 93, (2012) · Zbl 1418.70034
[26] Fredenhagen, K.; Rejzner, K., Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory, Commun. Math. Phys., 317, 697, (2013) · Zbl 1263.81245
[27] Fresse, B., The cotriple resolution of differential graded algebras, Proc. Am. Math. Soc., 144, 4693-4707, (2016) · Zbl 1366.18007
[28] Ginot, G.; Tradler, T.; Zeinalian, M., Derived higher Hochschild homology, topological chiral homology and factorization algebras, Commun. Math. Phys., 326, 635-686, (2014) · Zbl 1334.13012
[29] Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory, Progress in Mathematics 174. Birkhäuser Verlag, Basel (1999) · Zbl 0949.55001
[30] Gwilliam, O.; Haugseng, R., Linear Batalin-Vilkovisky quantization as a functor of \(\infty \)-categories, Sel. Math., 24, 1247-1313, (2018) · Zbl 1456.18018
[31] Haag, R.; Kastler, D., An algebraic approach to quantum field theory, J. Math. Phys., 5, 848, (1964) · Zbl 0139.46003
[32] Hinich, V., Homological algebra of homotopy algebras, Comm. Algebra, 25, 3291-3323, (1997) · Zbl 0894.18008
[33] Hinich, V., Rectification of algebras and modules, Doc. Math., 20, 879-926, (2015) · Zbl 1339.18013
[34] Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003) · Zbl 1017.55001
[35] Hollander, S., A homotopy theory for stacks, Israel J. Math., 163, 93-124, (2008) · Zbl 1143.14003
[36] Hollands, S., Renormalized quantum Yang-Mills fields in curved spacetime, Rev. Math. Phys., 20, 1033, (2008) · Zbl 1161.81022
[37] Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999) · Zbl 0909.55001
[38] Kawahigashi, Y., Conformal field theory, tensor categories and operator algebras, J. Phys. A, 48, 303001, (2015) · Zbl 1328.81194
[39] Lang, B.: Universal constructions in algebraic and locally covariant quantum field theory. Ph.D. thesis, University of York. http://etheses.whiterose.ac.uk/8019/ (2014)
[40] Loday, J.-L., Vallette, B.: Algebraic Operads, Grundlehren der Mathematischen Wissenschaften 346. Springer, Heidelberg (2012) · Zbl 1260.18001
[41] Lurie, J., On the classification of topological field theories, Curr. Dev. Math., 2008, 129-280, (2009) · Zbl 1180.81122
[42] Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009) · Zbl 1175.18001
[43] Lurie, J.: Higher Algebra, book draft. http://www.math.harvard.edu/ lurie/papers/HA.pdf
[44] Nguyen, J., Teh, N.J., Wells, L.: Why surplus structure is not superfluous. To appear in The British Journal for the Philosophy of Science. arXiv:1712.01228 [physics.hist-ph]
[45] Pantev, T.; Toën, B.; Vaquié, M.; Vezzosi, G., Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci., 117, 271-328, (2013) · Zbl 1328.14027
[46] Quillen, D.; Ji, L. (ed.); Liu, K. (ed.); Yau, S-T (ed.), Higher algebraic \(K\)-theory: I, No. 12, (2010), Somerville
[47] Pavlov, D.; Scholbach, J., Admissibility and rectification of colored symmetric operads, J. Topol., 11, 559-601, (2018) · Zbl 1405.18016
[48] Riehl, E.: Categorical Homotopy Theory. New Mathematical Monographs 24. Cambridge University Press, Cambridge (2014) · Zbl 1317.18001
[49] Rodríguez-González, B., Realizable homotopy colimits, Theory Appl. Categ., 29, 609-634, (2014) · Zbl 1302.18015
[50] Schreiber, U.: Differential cohomology in a cohesive infinity-topos, current version. https://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos, arXiv:1310.7930 [math-ph]
[51] Schwede, S.; Shipley, B., Equivalences of monoidal model categories, Algebr. Geom. Topol., 3, 287-334, (2003) · Zbl 1028.55013
[52] Schweigert, C., Woike, L.: Extended homotopy quantum field theories and their orbifoldization. arXiv:1802.08512 [math.QA] · Zbl 1419.57047
[53] Spitzweck, M.: Operads, algebras and modules in general model categories. Ph.D. thesis, Bonn. http://hss.ulb.uni-bonn.de/2001/0241/0241.pdf (2001) · Zbl 1103.18300
[54] Tehrani, M.T., Zahn, J.: Background independence in gauge theories. arXiv:1804.07640 [math-ph]
[55] Yau, D.: Colored Operads. Graduate Studies in Mathematics, vol. 170. American Mathematical Society, Providence (2016) · Zbl 1348.18014
[56] Yau, D.: Homotopical Quantum Field Theory. arXiv:1802.08101 [math-ph]
[57] Zahn, J., The renormalized locally covariant Dirac field, Rev. Math. Phys., 26, 1330012, (2014) · Zbl 1287.81086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.