×

zbMATH — the first resource for mathematics

Parabolic permutation representations of the group \(^2E_6(q^2)\). (English. Russian original) Zbl 0985.20008
Math. Notes 67, No. 6, 758-770 (2000); translation from Mat. Zametki 67, No. 6, 899-912 (2000).
An important class of permutation representations of groups of Lie type is formed by parabolic representations, i.e., representations on the cosets of parabolic subgroups. For finite simple groups of exceptional Lie type, the faithful parabolic representations of minimal degree were studied by A. V. Vasil’ev [see Algebra Logika 35, No. 6, 663-684 (1996; Zbl 0880.20006), ibid. 36, No. 5, 518-530 (1997; Zbl 0941.20006), ibid. 37, No. 1, 17-35 (1998; Zbl 0941.20007)]. The author [Tr. Inst. Mat. Mekh., Ural Division Russian Acad. Sci. 5, 39-59 (1998), Collect. Sci. Trans. “Combinatorial and computational methods in mathematics”, Omsk 1999, 160-189 (1999), Proc. Int. Conf. “Low-dimensional topology and combinatorial group theory” (Chelyabinsk, 1999), Kiev 38-64 (2000), and Mat. Zametki 67, No. 1, 69-76 (2000; Zbl 0965.20007)], studied the primitive parabolic representations of nonminimal degree for all finite simple groups of exceptional Lie type except for the group \(^2E_6(q^2)\).
In the present paper, the author determines the degrees, ranks, subdegrees, and double centralizers of the permutation representations of \(^2E_6(q^2)\) on the cosets of parabolic maximal subgroups of nonminimal index. The results obtained for the representatives \(P_2\), \(P_3\), and \(P_4\) of the conjugacy classes of these subgroups are presented in tables. In these tables, for the \(l\)-th suborbit, the conjugating element \(y_l\), the subdegree \(n_l\), and the structure of the double centralizer \(P_j\cap P_j^{y_l}\) corresponding to this suborbit (\(j=2,3,4\)) are indicated. The conjugating elements \(y_l\) are explicitly indicated in the text of the paper. For computations, the software “Chevie” of the computer system GAP was used.

MSC:
20C33 Representations of finite groups of Lie type
20D06 Simple groups: alternating groups and groups of Lie type
20E28 Maximal subgroups
20E45 Conjugacy classes for groups
Software:
GAP; CHEVIE
PDF BibTeX Cite
Full Text: DOI
References:
[1] B. N. Cooperstein, ”Minimal degree for a permutation representation of a classical group,”Israel J. Math.,30, No. 3, 213–235 (1978). · Zbl 0383.20027
[2] M. W. Liebeck and J. Saxl, ”On the orders of maximal subgroups of the finite exceptional groups of Lie type,”Proc. London Math. Soc.,55, 299–330 (1987). · Zbl 0671.20043
[3] A. S. Kondrat’ev, ”Subgroups of finite Chevalley groups,”Uspekhi Mat. Nauk [Russian Math. Surveys],41, No. 1, 57–96 (1986).
[4] J. Tits, ”A local approach to buildings,” in:Geometric Vein (Coxeter Festschrift), Springer, New York (1981), pp. 519–547.
[5] A. V. Vasil’ev, ”Minimal permutation representations of finite simple exceptional groups of typesG 2 andF 4,”Algebra i Logika [Algebra and Logic],35, No. 6, 663–684 (1996).
[6] A. V. Vasil’ev, ”Minimal permutation representations of finite simple exceptional groups of typesE 6,E 7, andE 8,”Algebra i Logika [Algebra and Logic],36, No. 5, 663–684 (1997).
[7] A. V. Vasil’ev, ”Minimal permutation representations of finite simple exceptional groups of twisted type,”Algebra i Logika [Algebra and Logic],37, No. 1, 17–35 (1998).
[8] V. V. Korableva, ”Parabolic permutation representations of twisted groups,” in:Conference of Young Scientists ”Problems in Theoretical and Applied Mathematics” [in Russian], Abstracts of Papers No. 28, Ural Division of the Russian Academy of Sciences, Ekaterinburg (1997), pp. 7–8.
[9] V. V. Korableva, ”Parabolic permutation representations of the groupF 4(q),”Trudy Inst. Matem. Mekh., Ural Division of the Russian Academy of Sciences,5, 39–59 (1998). · Zbl 1004.20501
[10] V. V. Korableva, ”On parabolic permutation representations of exceptional groups of Lie type,” in:International Conference ”Combinatorial and Computational Methods in Mathematics” [in Russian], Abstracts of Papers, Omsk State University, Omsk (1998), pp. 77–81.
[11] V. V. Korableva, ”Parabolic permutation representations of groupsE 6(q) andE 7(q),” in:Collection of Scientific Transactions ”Combinatorial and Computational Methods in Mathematics” [in Russian], Omsk State University, Omsk (1999), pp. 160–189.
[12] V. V. Korablyova, ”Parabolic permutation representations of groupsE 8(q),” in:Intern. Conf. ”Low-dimensional topology and combinatorial group theory” Abstracts of talks, Chelyabinsk State Univ., Chelyabinsk (1999), p. 26.
[13] M. Schönert,GAP-Groups, Algorithms, and Programming. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany (1997).
[14] R. W. Carter,Simple Groups of Lie Type, Wiley, London (1972). · Zbl 0248.20015
[15] R. Steinberg,Lectures on Chevalley Groups, Yale Univ. Math. Dept. (1968). · Zbl 1196.22001
[16] B. Huppert,Endliche Gruppen I, Springer, Berlin (1967).
[17] N. Bourbaki,Groupes et algébres de Lie. Chap. 4, 5 et 6, Hermann, Paris (1968). · Zbl 0186.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.