×

zbMATH — the first resource for mathematics

\(H\)-contact unit tangent sphere bundles. (English) Zbl 1140.53014
Let \((M,g)\) be a Riemannian manifold. Its unit tangent bundle \(T_1 M\) has a natural contact metric structure \((\xi,\eta,\Phi,\bar{g})\). Following a previous paper of the author [Differ. Geom. Appl. 20, No. 3, 367-378 (2004; Zbl 1061.53028)] we say that a metric contact structure is \(H\)-contact if the Reeb vector field \(\xi\) is harmonic. E. Boeckx and L. Vanhecke [Differ. Geom. Appl. 13, No. 1, 77–93 (2000; Zbl 0973.53053)] have proved that if \(M\) is a two-point homogeneous space then \(T_1 M\) is \(H\)-contact, and asked if the converse of this holds. This paper investigates this question, confirming in several cases.

MSC:
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C35 Differential geometry of symmetric spaces
PDF BibTeX Cite
Full Text: DOI Euclid
References:
[1] E. Abbena and S. Garbiero, Curvature forms and Einstein-like metrics on Sasakian manifolds , Math. J. Okayama Univ. 34 (1992), 241-248. · Zbl 0824.53042
[2] D.E. Blair, Riemannian geometry of contact and sympletic manifolds , Progress Math. 203 , Birkäuser, Berlin, 2002. · Zbl 1011.53001
[3] D.E. Blair, T. Koufogiorgos and B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition , Israel J. Math. 91 (1995), 189-214. · Zbl 0837.53038
[4] E. Boeckx, Einstein-like semi-symmetric spaces , Arch. Math. (Brno) 29 (1993), 235-240. · Zbl 0807.53041
[5] ——–, A class of locally \(\varphi\)-symmetric contact metric spaces , Arch. Math. (Basel) 72 (1999), 466-472. · Zbl 0963.53007
[6] ——–, A full classification of contact metric \((k,\mu)\)-spaces , Illinois J. Math. 44 (2000), 212-219. · Zbl 0969.53019
[7] ——–, When are the tangent sphere bundles of a Riemannian manifold reducible? , Trans. Amer. Math. Soc. 355 (2003), 2885-2903. JSTOR: · Zbl 1033.53013
[8] E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles , Houston J. Math. 23 (1997), 427-448. · Zbl 0897.53010
[9] ——–, Curvature homogeneous unit tangent sphere bundles , Publ. Math. Debrecen ( 3 - 4 ) (1998), 389-413. · Zbl 0910.53008
[10] ——–, Harmonic and minimal vector fields on tangent and unit tangent bundles , Differential Geom. Appl. 13 (2000), 77-93. · Zbl 0973.53053
[11] R.L. Bryant, Bochner-flat Kähler metrics , J. Amer. Math. Soc. 14 (2001), 623-715. JSTOR: · Zbl 1006.53019
[12] G. Calvaruso, Contact metric geometry of the unit tangent sphere bundle , in Complex, contact and symmetric manifolds, in honor of L. Vanhecke , O. Kowalski, E. Musso and D. Perrone, eds., · Zbl 1079.53045
[13] O. Gil-Medrano, Relationship between volume and energy of unit vector fields , Differential Geom. Appl. 15 (2001), 137-152. · Zbl 1066.53068
[14] ——–, Unit vector fields that are critical points of the volume and of the energy: characterization and examples , in Complex, contact and symmetric manifolds, in Honor of L. Vanhecke , O. Kowalski, E. Musso and D. Perrone, eds., · Zbl 1075.53055
[15] A. Gray, Compact Kaehler manifolds with nonnegative sectional curvature , Invent. Math. 41 (1977), 33-43. · Zbl 0364.53027
[16] ——–, Einstein-like manifolds which are not Einstein , Geom. Ded. 7 (1978), 259-280. · Zbl 0378.53018
[17] B.J. Papantoniou, Contact manifolds, harmonic curvature tensor and \((k,\mu )\)-nullity distribution , Comment. Math. Univ. Carolin. 34 (1993), 323-334. · Zbl 0782.53024
[18] D. Perrone, Harmonic characteristic vector fields on contact metric three-manifolds , Bull. Austral. Math. Soc. 67 (2003), 305-315. · Zbl 1034.53050
[19] ——–, Contact metric manifolds whose characteristic vector field is a harmonic vector field , Differential Geom. Appl. 20 (2004), 367-378. · Zbl 1061.53028
[20] ——–, Geometry of contact Riemannian manifolds whose Reeb vector field is harmonic , in Selected topics in geometry and mathematical physics , E. Barletta, ed., · Zbl 1105.53036
[21] K. Sekigawa and L. Vanhecke, Volume-preserving geodesic symmetries on four-dimensional Kähler manifolds , in Differential geometry , · Zbl 0605.53031
[22] Z.I. Szab\(\acuteo\), Structure theorems on Riemannian spaces satisfying \(R(X,Y)R=0\). I The local version , J. Differential Geom. 17 (1982), 531-582. · Zbl 0508.53025
[23] Y. Tashiro, On contact structures on tangent sphere bundles , Tôhoku Math. J. 21 (1969), 117-143. · Zbl 0182.55501
[24] G. Wiegmink, Total bending of vector fields on Riemannian manifolds , Math. Ann. 303 (1995), 325-344. · Zbl 0834.53034
[25] C.M. Wood, On the energy of a unit vector field , Geom. Ded. 64 (1997), 319-330. · Zbl 0878.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.