zbMATH — the first resource for mathematics

Numerical analysis and implementational aspects of a new multilevel grid deformation method. (English) Zbl 1191.65160
Summary: Recently, we introduced and mathematically analysed a new method for grid deformation [SIAM J. Sci. Comput. 31, No. 2, 1539–1557 (2009; Zbl 1211.65160)] we call basic deformation method (BDM) here. It generalises the method proposed by G. Liao et al. [Numer. Methods Partial Differ. Equations 12, No. 4, 489–506 (1996; Zbl 0856.65109); Comput. Math. Appl. 48, No. 7–8, 1077–1085 (2004; Zbl 1066.65097); SIAM J. Sci. Comput. 20, No. 3, 811–825 (1999; Zbl 0929.76091)].
In this article, we employ the BDM as core of a new multilevel deformation method (MDM) which leads to vast improvements regarding robustness, accuracy and speed. We achieve this by splitting up the deformation process in a sequence of easier subproblems and by exploiting grid hierarchy. Being of optimal asymptotic complexity, we experience speed-ups up to a factor of 15 in our test cases compared to the BDM. This gives our MDM the potential for tackling large grids and time-dependent problems, where possibly the grid must be dynamically deformed once per time step according to the user’s needs. Moreover, we elaborate on implementational aspects, in particular efficient grid searching, which is a key ingredient of the BDM.

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Full Text: DOI
[1] Apel, T.; Grosman, S.; Jimack, P.; Meyer, A., A new methodology for anisotropic mesh refinement based upon error gradients, Applied numerical mathematics, 50, 3-4, 329-341, (2004) · Zbl 1050.65122
[2] Becker, C.; Kilian, S.; Turek, S., Hardware-oriented numerics and concepts for PDE software, (), 1-23
[3] Becker, C.; Turek, S., Featflow – finite element software for the incompressible navier – stokes equations, User manual, Universität Dortmund, 1999
[4] Bochev, P.B.; Liao, G.; de la Pena, G.C., Analysis and computation of adaptive moving grids by deformation, Numerical methods for partial differential equations, 12, 489ff, (1996)
[5] Brackbill, J.U.; Saltzman, J.S., Adaptive zoning for singular problems in two dimensions, Journal of computational physics, 46, 342-368, (1982) · Zbl 0489.76007
[6] Cai, X.-X.; Fleitas, D.; Jiang, B.; Liao, G., Adaptive grid generation based on least-squares finite-element method, Computers and mathematics with applications, 48, 7-8, 1077-1086, (2004)
[7] Cao, W.; Huang, W.; Russell, R.D., A study of monitor functions for two-dimensional adaptive mesh generation, SIAM journal on scientific computing, 20, 6, 1978-1994, (1999) · Zbl 0937.65104
[8] Carey, G.F., Computational grids: generation, adaptation, and solution strategies, (1997), Taylor and Francis · Zbl 0955.74001
[9] Dacorogna, B.; Moser, J., On a partial differential equation involving Jacobian determinant, Annales de le institut Henri Poincaré, 7, 1-26, (1990) · Zbl 0707.35041
[10] de Boer, W.D.; Tang, H.Z.; Zegeling, P.A., Robust and efficient adaptive moving mesh solution of the 2-d Euler equations, (), 419-430 · Zbl 1096.76035
[11] Di, Y.; Li, R.; Tang, T., A general moving mesh framework in 3D and its application for simulating the mixture of multi-phase flows, Communications in computational physics, 3, 3, 582-602, (2008) · Zbl 1195.76252
[12] Di, Y.; Li, R.; Tang, T.; Zhang, P., Moving mesh finite element methods for the incompressible navier – stokes equations, SIAM journal on scientific computing, 26, 3, 1036-1056, (2005) · Zbl 1115.76045
[13] Formaggia, L.; Perotto, S., Anisotropic error estimates for elliptic problems, Numerische Mathematik, 94, 67-92, (2003) · Zbl 1031.65123
[14] M. Grajewski, A new fast and accurate grid deformation method for r-adaptivity in the context of high performance computing, Ph.D. thesis, Dortmund University of Technology, Logos Verlag, Berlin, 2008
[15] Grajewski, M.; Köster, M.; Turek, S., Mathematical and numerical analysis of a robust and efficient grid deformation method in the finite element context, SIAM journal on scientific computing, 31, 2, 1539-1557, (2009) · Zbl 1211.65160
[16] Grajewski, M.; Turek, S., Establishing a new grid deformation method as tool in r- and rh-adaptivity, Vogelpothsweg, 87, 44227, (2010)
[17] Huang, W., Variational mesh adaptation: isotropy and equidistribution, Journal of computational physics, 174, 903-924, (2001) · Zbl 0991.65131
[18] Köster, M.; Göddeke, D.; Wobker, H.; Turek, S., How to gain speedups of 1000 on single processors with fast FEM solvers – benchmarking numerical and computational efficiency, Ergebnisberichte des instituts für angewandte Mathematik, vol. 382, (Oct. 2008), Fakultät für Mathematik TU Dortmund
[19] Lang, J.; Cao, W.; Weizhang, H.; Russell, R.D., A two-dimensional moving finite element method with local refinement based on a posteriori error estimates, Applied numerical mathematics, 46, 75-94, (2003) · Zbl 1022.65107
[20] Liao, G.; Anderson, D., A new approach to grid generation, Applicable analysis, 44, 285-298, (1992) · Zbl 0794.65085
[21] Liu, F.; Ji, S.; Liao, G., An adaptive grid method and its application to steady Euler flow calculations, SIAM journal on scientific computing, 20, 3, 811-825, (1998) · Zbl 0929.76091
[22] Miemczyk, M., Hexaeder-Gittergenerierung durch Kombination von Gitterdeformations-, Randadaptions- und “Fictitious-Boundary”-Techniken zur Strömungssimulation um komplexe dreidimensionale Objekte, Diploma thesis, University of Technology, Dortmund, 2007
[23] Panduranga, R., Numerical analysis of new grid deformation method in three-dimensional finite element applications, master thesis, Dortmund university of technology, 2006
[24] S. Turek, D. Göddeke, C. Becker, S. H. Buijssen, H. Wobker, FEAST - Realisation of hardware-oriented numerics for HPC simulations with finite elements, in: Concurrency and Computation: Practice and Experience, Special Issue, Proceedings of ISC, 2008, in press
[25] Turek, S.; Runge, A.; Becker, C., The FEAST indices – realistic evaluation of modern software components and processor technologies, Computers and mathematics with applications, 41, 1431-1464, (2001) · Zbl 0989.65051
[26] Wan, D.; Turek, S., Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows, Journal of computational physics, 22, 28-56, (2006) · Zbl 1216.76036
[27] Zhang, Z.; Naga, A., Validation of the a posteriori error estimator based on polynomial preserving recovery for linear elements, International journal for numerical methods in engineering, 61, 11, 1860-1893, (2004) · Zbl 1081.65103
[28] Zienkiewicz, O.C.; Zhu, J.Z., The superconvergent patch recovery and a posteriori error estimates. part 1: the recovery technique, International journal for numerical methods in engineering, 33, 1331-1364, (1992) · Zbl 0769.73084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.