×

The production of Tsallis entropy in the limit of weak chaos and a new indicator of chaoticity. (English) Zbl 1395.82118

Summary: We study the connection between the appearance of a ‘metastable’ behaviour of weakly chaotic orbits, characterized by a constant rate of increase of the C. Tsallis \(q\)-entropy [J. Stat. Phys. 52, No. 1–2, 479–487 (1988; Zbl 1082.82501)], and the solutions of the variational equations of motion for the same orbits. We demonstrate that the variational equations yield transient solutions, lasting for long time intervals, during which the length of deviation vectors of nearby orbits grows in time almost as a power-law. The associated power exponent can be simply related to the entropic exponent for which the \(q\)-entropy exhibits a constant rate of increase. This analysis leads to the definition of a new sensitive indicator distinguishing regular from weakly chaotic orbits, that we call ‘Average Power Law Exponent’ (APLE). We compare the APLE with other established indicators of the literature. In particular, we give examples of application of the APLE in (a) a thin separatrix layer of the standard map, (b) the stickiness region around an island of stability in the same map, and (c) the web of resonances of a 4D symplectic map. In all these cases we identify weakly chaotic orbits exhibiting the ‘metastable’ behaviour associated with the Tsallis q-entropy.

MSC:

82C03 Foundations of time-dependent statistical mechanics

Keywords:

chaos; \(q\)-entropy

Citations:

Zbl 1082.82501
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Tsallis, C., Possible generalization of boltzmann – gibbs statistics, Journal of statistical physics, 52, 479-487, (1988) · Zbl 1082.82501
[2] Tsallis, C.; Rapisarda, A.; Latora, V.; Baldovin, F., Nonextensivity: from low-dimensional maps to Hamiltonian systems, Lecture notes in physics, 602, 140-164, (2002)
[3] Tsallis, C.; Plastino, A.R.; Zheng, W.-M., Power-law sensitivity to initial conditions-new entopic representation, Chaos, solitons and fractals, 8, 6, 885-891, (1997) · Zbl 0933.37049
[4] Costa, U.M.S.; Lyra, M.L.; Tsallis, C.; Plastino, A., Power-law sensitivity to initial conditions within logisticlike family of maps: fractality and nonextensivity, Physical review E, 56, 1, 245-250, (1997)
[5] Lyra, M.L.; Tsallis, C., Nonextensivity and multifractality in low-dimensional dissipative systems, Physical review letters, 80, 1, 53-56, (1998)
[6] M. Baranger, V. Latora, A. Rapisarda, Time evolution of thermodynamic entropy for conservative and dissipative chaotic maps, 2000; M. Baranger, V. Latora, A. Rapisarda, Time evolution of thermodynamic entropy for conservative and dissipative chaotic maps, 2000 · Zbl 1023.37046
[7] Latora, V.; Baranger, M.; Rapisarda, A.; Tsallis, C., The rate of entropy increase at the edge of chaos, Physics letters A, 273, 97-103, (2000) · Zbl 1115.82327
[8] Grassberger, P.; Scheunert, M., Some more universal scaling laws for critical mappings, Journal of statistical physics, 26, 4, 697-717, (1981)
[9] Grassberger, P., Temporal scaling at Feigenbaum points and nonextensive thermodynamics, Physical review letters, 95, 14, 140601-1-140601-4, (2005)
[10] Robledo, A., Incidence of nonextensive thermodynamics in temporal scaling at Feigenbaum points, Physica A, 370, 2, 449-460, (2006)
[11] Baldovin, F.; Tsallis, C.; Schulze, B., Nonstandard entropy production in the standard map, Physica A, 320, 184-192, (2003) · Zbl 1010.37013
[12] Baldovin, F.; Brigatti, E.; Tsallis, C., Quasi-stationary states in low-dimensional Hamiltonian systems, Physics letters A, 320, 254-260, (2004) · Zbl 1065.82014
[13] Añaños, G.F.J.; Baldovin, F.; Tsallis, C., Anomalous sensitivity to initial conditions and entropy production an standard maps: nonextensive approach, European physical journal B, 46, 409-417, (2005)
[14] Voglis, N.; Contopoulos, G., Invariant spectra of orbits in dynamical systems, Journal of physics A: mathematical and general, 27, 14, 4899-4909, (1994) · Zbl 0843.58105
[15] Froeschlé, Cl.; Gonczi, R.; Lega, E., The fast Lyapunov indicator: A simple tool to detect weak chaos. application to the structure of the main asteroidal belt, Planetary and space science, 45, 7, 881-886, (1997)
[16] Voglis, N.; Contopoulos, G.; Efthymiopoulos, C., Method for distinguishing between ordered and chaotic orbits in four dimensional maps, Physical review E, 57, 1, 372-377, (1998)
[17] Cincotta, P.M.; Simó, C., Simple tools to study global dynamics in non-axisymmetric galactic potentials — I, Astronomy and astrophysics supplement, 147, 205-228, (2000)
[18] Cincotta, P.M.; Giordano, C.M.; Simó, C., Phase space structure of multidimensional systems by means of Mean exponential growth factor of nearby orbits, Physica D, 182, 151-178, (2003) · Zbl 1032.37042
[19] Skokos, Ch., Alignment indices: A new, simple method for determining the ordered or chaotic nature of orbits, Journal of physics A: mathematical and general, 34, 10029-10043, (2001) · Zbl 1004.37021
[20] Froeschlé, Cl.; Guzzo, M.; Lega, E., Local and global diffusion along resonant lines in discrete quasi-integrable dynamical systems, Planetary and space science, 45, 7, 881-886, (2005) · Zbl 1083.37050
[21] Schuster, H.G., Deterministic chaos, (1995), VCH
[22] Pesin, Ya.B., Characteristic Lyapunov exponents and smooth ergodic theory, Russian mathematical surveys, 52, 4, 55-114, (1977) · Zbl 0383.58011
[23] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J.-M., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems — A method for computing all of them. I — theory. II — numerical application, Meccanica, 15, 9-30, (1980) · Zbl 0488.70015
[24] Kolmogorov, A.N., A new metric invariant for transitive dynamical systems and automorphisms of Lebesgue spaces, Doklady academii nauk SSSR, 119, 861-864, (1958) · Zbl 0083.10602
[25] Sinai, Ya.G., Markov partitions and c-diffeomorphisms, Functional analysis and its applications, 2, 1, 61-82, (1968) · Zbl 0182.55003
[26] Latora, V.; Baranger, M., Kolmogorov – sinai entropy rate versus physical entropy, Physics review letters, 82, 3, 520-523, (1999)
[27] Morbidelli, A., Modern celestial mechanics. aspects of solar system dynamics, (2002), Taylor and Francis London, New York
[28] Chirikov, B.V., Homogeneous model for resonant particle diffusion in an open magnetic confinement system, Soviet journal of plasma physics, 5, 492-497, (1979)
[29] Voglis, N.; Contopoulos, G.; Efthymiopoulos, C., Detection of ordered and chaotic motion using the dynamical spectra, Celestial mechanics and dynamical astronomy, 73, 1-4, 372-377, (1999) · Zbl 0944.37013
[30] Froeschlé, Cl.; Lega, E., On the structure of symplectic mappings. the fast Lyapunov indicator: A very sensitive tool, Celestial mechanics and dynamical astronomy, 78, 167-195, (2000) · Zbl 0986.37075
[31] Meiss, J.D., Symplectic maps, variational principles, and transport, Reviews of modern physics, 64, 3, 795-848, (1992) · Zbl 1160.37302
[32] Greene, J.M., A method for determining a stochastic transition, Journal of mathematical physics, 20, 6, 1183-1201, (1979)
[33] Contopoulos, G.; Varvoglis, H.; Barbanis, B., Large degree stochasticity in a galactic model, Astronomy and astrophysics, 172, 1-2, 55-66, (1987) · Zbl 0609.70025
[34] Contopoulos, G.; Harsoula, M.; Voglis, N.; Dvorak, R., Destruction of islands of stability, Journal of physics A: mathematical and general, 32, 128, 5213-5232, (1999) · Zbl 0989.37057
[35] Efthymiopoulos, C.; Contopoulos, G.; Voglis, N.; Dvorak, R., Stickiness and cantori, Journal of physics A: mathematical and general, 30, 8167-8186, (1997) · Zbl 0948.37043
[36] Efthymiopoulos, C.; Contopoulos, G.; Voglis, N., Cantori, islands and asymptotic curves in the stickiness region, Celestial mechanics and dynamical astronomy, 73, 1-4, 221-230, (1999) · Zbl 0956.37023
[37] Contopoulos, G.; Voglis, N.; Efthymiopoulos, C.; Froeschlé, C.; Gonczi, R.; Lega, E.; Dvorak, R.; Lohinger, E., Transition spectra of dynamical systems, Celestial mechanics and dynamical astronomy, 67, 4, 293-317, (1997) · Zbl 0905.58039
[38] Nekhoroshev, N.N., An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Uspekhi matematicheskikh nauk, 32, 5-66, (1977) · Zbl 0389.70028
[39] Guzzo, M.; Lega, E.; Froeschlé, Cl., First numerical evidence of global Arnold diffusion in discrete quasi-integrable systems, Discrete and continuous dynamical systems, 5, 3, 687-698, (2005) · Zbl 1081.37035
[40] Arnold, V.I., Instability of dynamical systems with several degrees of freedom, Soviet mathematics, 5, 581-585, (1964) · Zbl 0135.42602
[41] Cincotta, P.M., Arnold diffusion: an overview through dynamical astronomy, New astronomy reviews, 46, 1, 13-39, (2002)
[42] Laskar, J., Frequency analysis for multi-dimensional systems. global dynamics and diffusion, Physica D, 67, 1-3, 257-281, (1993) · Zbl 0783.58027
[43] Kaneko, K.; Konishi, T., Peeling the onion of order and chaos in a high-dimensional Hamiltonian system, Physica D, 71, 146-167, (1994) · Zbl 0810.70017
[44] Giordano, C.M.; Cincotta, P.M., Chaotic diffusion of orbits in systems with divided phase space, Astronomy and astrophysics, 423, 745-753, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.