zbMATH — the first resource for mathematics

A geometric realization of \(\mathfrak{sl}(6,\mathbb C)\). (English) Zbl 1210.53085
Summary: Given an orientable weakly self-dual manifold \(X\) of rank two (see the second author, Asian J. Math. 9, No. 1, 79–101 (2005; Zbl 1085.14035)), we build a geometric realization of the Lie algebra \(\mathfrak{sl}(6,\mathbb C)\) as a naturally defined algebra \(L\) of endomorphisms of the space of differential forms of \(X\). We provide an explicit description of Serre generators in terms of natural generators of \(L\). This construction gives a bundle on \(X\) which is related to the search for a natural gauge theory on \(X\). We consider this paper as a first step in the study of a rich and interesting algebraic structure.

53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
17B20 Simple, semisimple, reductive (super)algebras
53C55 Global differential geometry of Hermitian and Kählerian manifolds
Full Text: DOI Link EuDML arXiv
[1] V. BATYREV, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom., 3 (1994), pp. 493-535. Zbl0829.14023 MR1269718 · Zbl 0829.14023
[2] U. BRUZZO - G. MARELLI - F. PIOLI, A Fourier transform for sheaves on real tori Part II. Relative theory, J. of Geometry and Phy., 41 (2002), pp. 312-329. Zbl1071.14515 MR1888468 · Zbl 1071.14515 · doi:10.1016/S0393-0440(01)00065-1
[3] P. CANDELAS - X.C. DE LA OSSA - P.S. GREEN - L. PARKES, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys., B359 (1991), pp. 21-74. Zbl1098.32506 MR1115626 · Zbl 1098.32506 · doi:10.1016/0550-3213(91)90292-6
[4] G. GAIFFI - M. GRASSI, A natural Lie superalgebra bundle on rank three WSD manifolds, J. of Geom. and Phys., 59 (2009), 207-220. Zbl1158.81023 MR2492191 · Zbl 1158.81023 · doi:10.1016/j.geomphys.2008.10.005
[5] M. GRASSI, Polysymplectic spaces, s-Kähler manifolds and lagrangian fibrations, math.DG/0006154 (2000).
[6] M. GRASSI, Mirror symmetry and self-dual manifolds, math.DG/0202016 (2002).
[7] M. GRASSI, Self-dual manifolds and mirror symmetry for the quintic threefold, Asian J. Math., 9 (2005), pp. 79-102. Zbl1085.14035 MR2150693 · Zbl 1085.14035 · doi:10.4310/AJM.2005.v9.n1.a7
[8] B.R. GREENE - M.R. PLESSER, Duality in Calabi-Yau moduli space, Nucl. Phys., B338 (1990), pp. 15-37. MR1059831
[9] B.R. GREENE - C. VAFA - N.P. WARNER, Calabi-Yau manifolds and renormalization group flows, Nucl. Phys., B324 (1989), pp. 371-390. Zbl0744.53044 MR1025421 · Zbl 0744.53044 · doi:10.1016/0550-3213(89)90471-9
[10] M. GROMOV, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser P.M., 152 (Boston, 1999). Zbl0953.53002 MR1699320 · Zbl 0953.53002
[11] M. GROSS - P.M.H. WILSON, Large Complex Structure limits of K3 surfaces, math.DG/0008018 (2001). MR1863732
[12] V. GUILLEMIN, Moment maps and combinatorial invariants of Hamiltonian Tn -spaces, P. M. Birkhäuser, 122 (1994). Zbl0828.58001 MR1301331 · Zbl 0828.58001
[13] A. MCINROY, Orbifold mirror symmetry for complex tori, preprint. · Zbl 1298.51010
[14] M. KONTSEVICH - Y. SOIBELMAN, Homological mirror symmetry and torus fibrations, math.SG/0011041 (2001). Zbl1072.14046 MR1882331 · Zbl 1072.14046
[15] A. STROMINGER - S.T. YAU - E. ZASLOW, Mirror Symmetry is T-Duality, Nucl. Phys., B479 (1996), pp. 243-259. Zbl0896.14024 MR1429831 · Zbl 0896.14024 · doi:10.1016/0550-3213(96)00434-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.