×

Jacobi forms and \(p\)-adic Weber formula. (Formes de Jacobi et formule de Weber \(p\)-adique.) (French) Zbl 1059.11036

From the text: The author continues his previous work with G. Robert [C. R. Acad. Sci., Paris, Sér. I, Math. 325, No. 5, 455–460 (1997; Zbl 0885.11035)] and constructs a \(p\)-adic analogue of the meromorphic complex Jacobi form \(D_L(z,\phi) (L\) a complex lattice, \(z,\phi\in\mathbb C)\). As this function can be expressed as a quotient of suitable Jacobi theta functions and Roquette’s theory of elliptic functions over local fields, the author shows that it satisfies a simple additive distribution and an inversion relation. As a consequence of this result he proves a \(p\)-adic analog of a generalized complex Weber’s formula.

MSC:

11F50 Jacobi forms
11G07 Elliptic curves over local fields
11F85 \(p\)-adic theory, local fields

Citations:

Zbl 0885.11035
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML EMIS

References:

[1] Bayad, A., Valuation q-adique et retation de distribution additive pour certaines fonctions q-périodiques. J. Number Theory65 (1997), 1-22. · Zbl 0924.11047
[2] Bayad, A., Bley, W., Cassou-Noguès, Ph., Sommes arithmétiques etéléments de Stickelberger. J. Algebra179 (1996), 145-190. · Zbl 0863.11074
[3] Bayad, A., Robert, G., Amélioration d’une congruence pour certains éléments de Stickelberger quadratiques. Bull. Soc. Math. France125 (1997), 249-267. · Zbl 0895.11021
[4] Bayad, A., Robert, G., Note sur une forme de Jacobi méromorphe. CRAS325 (1997), 455-460. · Zbl 0885.11035
[5] Ph., Cassou-Noguès, Taylor, M.J., Un élément de Stickelberger quadratique. J. Number Theory37 (1991), 307-342. · Zbl 0719.11075
[6] Choie, Y.J., Jacobi forms and the heat operator. Math. Z.225 (1997), 95-101. · Zbl 0869.11045
[7] Frobenius, F.G.Über die elliptischen Functionen zweiter Art. Ges. Abhand. b.II, 81-96 = J. Reine Angew. Math.93 (1882), 53-68.
[8] Guerzhoy, P., An approch to the p-adic theory of Jacobi forms. IMRN (1), 1994. · Zbl 0869.11039
[9] Guerzhoy, P., Jacobi-Eisenstein series and p-adic interpolation of symmetric squares of cusp forms. Ann. Inst. Fourier45 (1995), 605-624. · Zbl 0820.11035
[10] Kubert, D., Lang, S., Modular units. Grundlehren der math. Wiss.244, Springer-Verlag, 1981. · Zbl 0492.12002
[11] Lang, S., Elliptic functions. Addison-Wesley, 1973. · Zbl 0316.14001
[12] Mazur, B. and Tate, J., The p-adic sigma function. Duke Math. J.104 (1991), 663-688. · Zbl 0735.14020
[13] Roquette, P., Analytic theory of elliptic function over local fields. (Hamburger Mathematische Einzelschriften), Vandenhoeck et Ruprecht in Göttingen, 1970. · Zbl 0194.52002
[14] Runge, B., Theta functions and Siegel-Jacobi forms. Acta Math.175 (1995), 165-196. · Zbl 0882.11028
[15] Schertz, R., Galoismodulstruktur und elliptische Funktionen. J. Number Theory33 (1991), 287-326. · Zbl 0739.11052
[16] Schertz, R., Problèmes de construction en multiplication complexe. Sém. Théor. Nombres Bordeaux4 (1992), 239-262. · Zbl 0797.11083
[17] Sofer, A., p-adic aspects of Jacobi Forms. J. Number Theory63 (1997), 191-202. · Zbl 0878.11021
[18] Weber, H., Lehrbuch der Algebra. Bd III, Neudruck, 1962.
[19] Zagier, D., Periods of modular forms and Jacobi theta functions. Invent. Math.104 (1991), 449-465. · Zbl 0742.11029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.